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Abstract

This chapter presents the science of "COllective INtelligence" (COIN). A COIN

is a large multi-agent systems where:

i) the agents each run reinforcement learning (RL) algorithms;

ii) there is little to no centralized communication or control;

iii) there is a provided worht utility fimction that rates the possible histories of the

full system.

The conventional approach to designing large distributed systems to optimize a world

utility dots not use agents running RL algorithms. Rather that approach begins with

explicit modeling of the overall system's dynamics, followed by detailed hand-tuning

of the interactions between the components to ensure that they "cooperate" as far

as the world utility is concerned. This approach is labor-intensive, often results in

highly non-robust systems, and usually results in design techniques that have limited

applicability.

In contrast, with COINs We wish to s})lve the system design problems implicitly,

via the 'adaptive' character of the IlL algorithms of each of the agents. This COIN

approach introduces an entirely new, profound design problem: Assuming the RL

algorithms are able to achieve high rewards, what reward functions for the individual

agents will, when pursued by those agents, result in high world utility? In other

words, what reward fimctions will best ensure that we do not have phenomena like

the tragedy of the commons, or Braess's paradox?

Although still very young, the science of COINs has already resulted in successes in

artificial domains, in particular in packet-routing, the leader-follower problem, and

in variants of Arthur's "El Farol bar problem". It is expected that. as it matures

not only will COIN science expand greatly the range of tasks addressable by human

engineers, but it will also provide nmch insight into already established scientific

fields, such as economics, game theory, or population biology.



1 INTRODUCTION

Over the past decade or so two developments have occurred in computer science whose

intersection promises to open a vast new area of research, an area extending far beyond

the boundaries of conventional computer science. The first of these developments is the

growing realization of how useful it would be to be able to control distributed systems

which have little (if any) centralized communication, and to do so 'adaptively', with

minimal reliance on detailed knowledge of the system's small-scale dynamical behavior.

This realization has been most recently manifested in the field of amorphous computing

[]. The second development is the maturing of the discipline of reinforcement learning

(RL). This is the branch of machine learning that is concerned with an agent who

periodically receives 'reward' signals fl'om the environment that partially reflect the

value of that agent's personal utility fimction. The goal of RL is to determine how,

using those reward signals, the agent should update its action policy so as to maximize

its utility [127, 230, 243].

Intuitively, one might hope that the tool of RL would help us solve the distributed

control problem, since RL is adaptive, and in particular since it is not restricted to

domains having sufficient breadths of communication. However by itself, conventional

single-agent RL does not provide a means for controlling large, distributed systems. This

is true even if the system does have centralized communication. The problem is that

the space of possible action policies for such systems is too big to be searched. We

might imagine as a variant using a large set of agents, each controlling only part of the

system. Since the individual action spaces of such agents would be relatively small, we

could realistically deploy conventional RL on each one. However now we face the central

question of how to map the world utility function concerning the overall system into

personal utility flmctions for each of the agents. In particular, how should we design

those personal utility functions so that each agent can realistically hope to optimize its

function, and at the same time the collective behavior of tile agents will optimize the

world utility?

We use the term "COllective INtelligence" (COIN) to refer to any pair of a large,

distributed collection of interacting RL algorithms among which there is little to no

centralized communication or control, together with a world utility function that rates

the possible dynamic histories of the collection. The central COIN design problem is how,

without any detailed modeling of the overall system, you can set the utility functions

for the RL algorithms in a COIN to have the overall dynamics reliably and robustly

achieve large values of tile provided world utility. The benefits of an answer to this

question would extend beyond the many branches of computer science, having major

ramifications for many other sciences as well. The next section discusses some of those

benefits. The following section reviews previous work that has bearing on the COIN

design problem. The final section constitutes the core of this chapter. It presents a

quick outline of a promising mathematical framework for addressing this problem, and



thenexperimentalillustrationsof the prescriptionsof that framework.Throughoutwe
will useitalicsfor emphasis,singlequotesforinformallydefinedterms,anddoublequotes
to delineatecolloquialterminology.

2 Background

There are many design problems that involve distributed computational systems where

there are strong restrictions on centralized comnmnication ('we can't all talk'); or there is

communication with a central processor, but that processor is not sufficiently powerful to

determine how to control the entire system ('we aren't smart enough'); or the processor

is powerful enough in principle, but it is not clear what algorithm it could run by itself

that would effectively control the entire system ('we don't know what to think'). Just a

few of the potential examples include:

i) Designing a control system for constellations of communication satellites or of

constellations of planetary exploration vehicles (world utility in the latter case being

some measure of quality of scientific data collected);

ii) Designing a control system for routing over a communication network (world utility

being some aggregate quality of service tnea_sure);

iii) Construction of parallel algorithms for solving numerical optimization problems

(the optimization problem itself constituting the world utility);

iv) Vehicular traffic control, e.g., air traffic control, or high-occupancy-toll-lanes for

automobiles. (In these problems the individual agents are humans and the e.ssociated

utility functions nmst be of a constrained form, reflecting the relatively inflexible kinds

of preferences humans possess.);

v) Routing over a power grid;

vi) Control of a large, distributed chemical plant;

viii) Control of the elements of an amorphous computer;

ix) Control of the elements of a 'noisy' phased array radar;

x) Compute-serving over an information power grid.

Such systems may be best controlled with an artificial COIN. The potential useful-

ness of solving the COIN design problem extends far beyond such engineering concerns

however. That's because the COIN design problem is an inverse problem, whereas essen-

tially all of the scientific fields that are concerned with naturally-occurring distributed

systems analyze them purely as a "forward problem". That is, those fields analyze what

global behavior would arise from provided local dynamical laws, rather than grapple

with the inverse problem of how to configure those laws to induce desired global be-

havior. It seems highly likely that the insights garnered from understanding the inverse

problem would provide a trenchant novel perspective on those fields. Just as tackling

the inverse problem in the design of steam engines lead to the first true understanding of



tile macroscopic properties of physical bodes (aka thermodynamics), so may tile crack-

ing of the COIN design problem hopefully would augment our understanding of many

naturally-occurring COINs.

As an example, consider countries with capitalist human economies. Such systems

can be viewed as naturally occurring COINs. One can declare 'world utility' to be a time

average of the Gross Domestic Product (GDP) of the country in question. (World utility

per se is not a construction internal to a human economy, but rather something defined

from tile outside.) The reward functions for the human agents are the achievements of

their personal goals (usually involving personal wealth to some degree). As commonly

understood, the economy of the United Stated in the 1990's, or of Japan through much

of the 1970's and 1980's, serves as an existence proof that the COIN design problem has

solutions.

Now in general, to achieve high global utility in a COIN it is necessary to avoid having

the agents work at cross-purposes, lest phenomena like the Tragedy of the Commons

(TOC) occur, in which individual avarice works to lower global utility [102]. One way

to avoid such phenomena is by modifying the agents' utility functions. In the context

of capitalist economies, outcomes can be modified via punitive legislation. A real world

example of an attempt to make just such a modification was the creation of anti-trust

regulations designed to prevent monopolistic practices.

In designing a COIN we usually have more freedom than anti-trust regulators though,

in that there is no base-line "organic" local utility function over which we must superim-

pose legislation-like incentives. Rather, the entire "psychology" of the individual agents

is at our disposal, when designing a COIN. This obviates the need for honesty-elicitation

('incentive compatible') mechanisms, like auctions, which form a central component of

conventional economics. Accordingly, COINs can differ in certain crucial respects from

humau economies. The precise differences -- the subject of current research -- seem

likely to present many insights into the functioning of economic structures like anti-trust

regulators.

Another example of the novel perspective of COINs, also concerning human economies,

is the usefulness of (commodity, or especially fiat) money. The traditional economics view

is that money is useflfl because it is portable; universally vahmd (and therefore minimizes

the number of "trading posts" needed [223]); allows "middlemen" to facilitate resource

allocation, and the like. The COIN perspective however leads us to address lower-level

aspects of the usefulness of money. For example, formally, 'money' constitutes a par-

ticular class of couplings between the statcs and utility functions of the various agents.

Now for any underlying system any particular choice of utility functions for the agents

---like utility functions involving money -- will induce high levels of some world utili-

ties. But it will simultaneously induce low levels of world utilities. This raises a host

of questions, like how to formally specify the most general set of world utilities which

benefit significantly from money-based local utility functions form the class of such func-



tions involvingmoney.If oneis provideda world utility that is not a memberof that
set, thenan "economics-inspired"configurationof thesystemis likely to result in poor
performance.

Therearemanyotherscientificfieldswhicharecurrentlyunderinvestigationfrom a
COIN-designperspective.Someof themare, like economics,part of (or at leastclosely
relatedto) the socialsciences.Thesefields typically involveRL algorithmsunder the
guiseof humanagents.(An exampleis gametheory,especiallygametheoryof bounded
rationalplayers.)

Of course,real-worldeconomiesare "emergent"and don't haveexternallyimposed
worldutilities, like time-averageof GDP.Rathersuchutilities areananalytic tool that
an understandingof COINswouldexploit to gaininsight into thefunctioningof human
economies.Thereare other scientificfields that might benefit fi'om a COIN-design

perspective even though they study systems that don't even involve RL algorithms.

Tile idea here is that if we viewed such systems from a teleological perspective, both in

concentrating on a world utility and in casting tile nodal elements of tim system as RL

algorithnls, we could learn a lot about the form of the 'design space' in which such systems

live. Examples here are ecosystems (individual genes, individuals, or species being the

nodal elements) and cells (individual organelles in Eukaryotes being the nodal elements).

In both cases, the world utility could involve robustness of the desired equilibrium against

external perturbation, efficient ext)loitation of free energy in tile environnlent, etc.

3 Review of Literature Related to COINs

There are many different features that characterize what we mean by a "COIN". The

first four features in the following list are definitional; the remainder are not definitional

per se, but are fundamental to the sorts of COINs we are concerned with in this chapter.

1) There are many processors running concurrently, performing actions that affect

one another's behavior.

2) There is little to no centralized personalized comnmnication, i.e., little to no behav-

ior in which a small subset of the processors communicates with all the other processors,

but communicates differently with each one of those other processors. Any single pro-

cessor's "broadcasting" the same information to all other processors is not precluded.

3) There is little to no centralized personalized control, i.e., little to no behavior in

which a small subset of the processors controls all the other processors, but controls each

one of those other processors differently. "Broadcasting" tile same control signal to all

other processors is not precluded.

4) There is a well-specified task, typically in the form of extremizing a utility function,

that concerns the behavior of the entire distributed system. So we are confronted with

the inverse problem of how to configure the system to achieve the task.



5) The individual processors are running RL algorithms.

6) The approach for tackling (4) is scalable to very large numbers of processors•

7) The approach for tackling (4) is very broadly applicable. In particular, it can work

when little (if any) "broadcasting" as in (2) and (3) is possible.

8) The approach for tackling (4) involves little to no hand-tailoring.

9) The approach for tackling (4) is robust and adaptive, with minimal need to "get

• the details exactly right or else", as far as the stochastic dynamics of the system is

concerned.

The rest of this section reviews some of the fields that are related to COINs, and in

particular characterizes them in terms of this list of nine characteristics of COINs.

3.1 AI and Machine Learning

3.1.1 Reinforcement Learning

As discussed in the introduction, the maturing field of reinforcement learning provides a

much needed tool for the types of problems addressed by COINs. Because RL generally

provides model-free 1 and "online" learning features, it is ideally suited for the distributed

environment where a "teacher" is not available and the agents need to learn successful

strategies based on "rewards" and "penalties" they receive from the overall system at

various intervals. It is even possible for the learners to use those rewards to modify how

they learn [207].

Although work on RL dates back to Samuel's checker player [199], relatively recent

theoretical [243] and empirical results [57, 235] have made RL one of the 'hottest'

areas in machine learning• Many problems ranging from controlling a robot's gait to

controlling a chemical plant to allocating constrained resource have been addressed with

considerable success using RL [100, 119, 172, 190, 261]. In particular the RL algorithms

TD(),) (which rates potential states based on a value function) [230] and Q-learning

(which rates action-state pairs) [243] have been investigated extensively• A detailed

investigation of RL is available in [127, 231,243].

Although powerful and widely applicable, solitary RL algorithms will not perform

well on large distributed heterogenous problems in general• This is due to the very big

size of the action-policy space for such problems. In addition, without centralized coin-

munication and control, how a solitary RL algorithm could run the full system at all,

poorly or well, becomes a major concern. 2 For these reasons, it is natural to consider

deploying many RL algorithms rather than a single one for these large distributed prob-

IThere exist some model-based variants of traditional RL. See for example [8].

2One possible solution would be to run the RL off-line on a simulation of the flfll system and then
convey the results to the components of the system at the price of a single centralized initialization (e.g.,

[171]). In general though, this approach will suffer from being extremely dependent on "getting the

details right" in the simulation.



lems.Wewill discussthecoordinationissuessuchanapproachraisesin conjuctionwith
nmlti-agentsystemsin Section3.1.3and with learnabilityin COINsin Section4.

3.1.2 Distributed Artificial Intelligence

The field of Distributed Artificial Intelligence (DAI) has arisen as more and more tra-

ditional Artificial Intelligence (AI) tasks have migrated toward parallel implementation.

The most direct approach to such implementations is to directly parallelize AI production

systems or the underlying programming languages [84, 196]. An alternative and more

challenging approach is to use distributed computing, where not only are the individual

reasoning, planning and scheduling AI tasks parallelized, but there are different modules

with different such tasks, concurrently working toward a common goal [123, 124, 146].

In a DAI, one needs to ensure that tile task has been modularized in a way that im-

proves efficiency. Unfortunately, this usually requires a central controller whose purpose

is to allocate tasks and process the associated results. Moreover, designing that con-

troller in a traditional AI fashion often results in brittle solutions. Accordingly, recently

there has been a move toward both more autonomous modules and fewer restrictions on

the interactions among the modules [202].

Despite this evolution, DAI maintains the traditional AI concern with a pre-fixed set

of particular aspects of intelligent behavior (e.g. reasoning, understanding, learning etc.)

rather than on their cumulative character. As the idea that intelligence may have more

to do with the interaction among components started to take shape [42, 43], focus shifted

to concepts (e.g., nmlti agent systems) that better incorporated that idea [125].

3.1.3 Multi-Agent Systems

The field of Multi-Agent Systems (MAS) is concerned with the interactions among the

melnbers of such a set of agents [40, 96, 125, 211, 232], as well as the inner workings

of each agent in such a set (e.g., their learning algorithms) [36, 37, 38]. As in compu-

tational ecologies and computational markets (see below), a well-designed MAS is one

that achieves a global task through the actions of its components. The associated design

steps involve [125]:

1. Decomposing a global task into distributable subcomponents, yielding tractable

tasks for each agent;

2. Establishing communication channels that provide sufficient information to each

of the agents for it to achieve its task, but are not too unwieldly for the overall

system to sustain; and

3. Coordinating the agents in a way that ensures that they cooperate on the global

task, or at the very least does not allow them to pursue conflicting strategies in

trying to achieve their tasks.



Step(3) is rarely trivial; oneof the main difficultiesencounteredin MAS designis

that agents act selfishly and artificial cooperation structures have to be imposed on

their behavior to enforce cooperation [11]. An active area of research is to determine

how selfish agents' "incentives" have to be engineered in order to avoid the TOC [216].

When simply providing the right incentives is not sufficient, one can resort to strategies

that actively induce agents to cooperate rather than act selfishly. In such cases coor-

dination [212], negotiations [137], coalition formation [201, 203, 263] or contracting [2]

among agents may be needed to ensure that they do not work at cross purposes.

Unfortunately, all of these approaches share with DAI and its offshoots the problem

of relying excessively on hand-tailoring, and therefore being difficult to scale and often

non-robust. In addition, except as noted in the next subsection, they involve no RL.

3.1.4 Reinforcement Learning-Based Multi-Agent Systems

Because it neither requires explicit modeling of the environment nor having a "teacher"

that provides the "correct" actions, the approach of having the individual agents in a

MAS use RL is well-suited for MAS's deployed in domains where one has little knowledge

about the environment and/or other agents. There are two main approaches to designing

such MAS's:

(i) One has 'solipsistic agents' which don't know about each other and whose RL rewards

are given by the performance of the entire system (so the joint actions of all other agents

form an "inanimate background" contributing to the reward signal each agent receives);

(ii) One has 'social agents' that explicitly model each other and take each others' actions

into account.

Both (i) and (ii) can be viewed as ways to (try to) coordinate the agents in a MAS in a

robust fashion.

Solipsistic Agents: MAS's with solipsistic agents have been successfully applied to a

multitude of problems [57, 99, 109,200, 206]. Generally these schemes use RL algorithms

similar to those discussed in Section 3.1.1. However much of this work lacks a well defined

global task or broad applicability (e.g., [200]). More generally, none of the work with

solipsistic agents scales well. The problem is that each agent nmst be able to discern

the effect of its actions on the overall performance of the system, since that performance

constitutes its reward signal. As the number of agents increases though, the effects of

any one agent's actions (signal) will be swamped by the effects of other agents (noise),

making the agent unable to learn well, if at all. (See the discussion below on learnability.)

In addition, of course, solipsistic agents cannot be used in situations lacking centralized

calculation and broadcast of the single global reward signal.

Social agents: MAS's whose agents take the actions of other agents into account syn-

thesize RL with game theoretic concepts (e.g., Nash equilibrium). They do this to try

to ensure that the overall system both moves toward achieving the overall global goal

and avoids oscillatory behavior [56, 88, 117, 118]. To that end, the agents incorporate



internal mechanisms that actively model tile behavior of other agents. In Section 3.2.5

we discuss a situation where such modeling is necessarily self-defeating. More gener-

ally, this approach suffers from being narrowly applicable, requiring hand tailoring, and

potentially not scaling well.

3.2 Social Science-Inspired Systems

Economics provides more than examples of naturally occurring systems that can be

viewed as a (more or less) well-performing COIN. Both empirical economics (e.g., eco-

nomic history, experimental economics) and theoretical economics (e.g., general equilib-

rium theory [3], theory of optimal taxation [165]), provide a rich literature on how to

study strategic situations where many parties interact.

In this section we summarize the two economics concepts that are probably the most

closely related to COINs, in that they deal with how a large number of interacting agents

can function in a stable and efficient manner: general equilibrium theory and mechanism

design. We then discuss general attempts to apply those concepts to distributed compu-

tational problems. We follow this with a discussion of game theory, and then present a

particular celebrated toy-world problem that involves many of these issues.

3,2.1 General Equilibrium Theory

Often the first version of "equilibrium" that one encounters in economics is that of

supply and demand in single markets: the price of the market's good is determined by

where the supply and demand curves for that good intersect. In cases where there is

interaction among nmltit)le markets however, one cannot simply determine the price of

each market's good individually, as both the supply and demand for each good depends

on the supply/demand of other goods. Considering the price fluctuations across markets

leads to the concept of 'general equilibrium', where prices for each good are determined

in such a way to ensure that all markets 'clear' [3, 222]. Intuitively, this means that

prices are set so the total supply of each good is equal to the demand for that good a. The

existence of such an equilibrium, proven in [3], was first postulated by Leon Walras [242].

A mechanism that calculates the equilibrium (i.e., market-clearing) prices now bears his

name: the Walrasian auctioner.

aMore formally, each agent's utility is a function of that agent's allotment of all the possible goods.

In addition, every good has a price. (Utility functions are independent of inoney.) Therefore, for any set

of prrices for the goods, every agent has a 'budget', given by their initial allotment of goods. We pool

all the agents' goods together. Then we set prices for all of those goods, and allocate the goods back

among the agents in such a way that each agent is given a total value of goods (as determined by the

prices) equal to that agent's budget (as determined by the prices and by that agent's initial allotment).

'Markets clear' at those prices for which all the initial goods are reallocated back among the agents (no

"excess supply") and for which each agent views its allocation of goods as optimizing its utility, subject

to its budget and to those prices for the goods (no "excess demand").

9



As a model of real-world interactions between agents, general equilibrium theory

suffers fi'om having no temporal aspect (i.e., no dynamics) and fi'om assuming that all

the agents are perfectly rational. Another shortcoming of general equilibrium theory is

that it does not readily accommodate the concept of money [87]. Of the three main roles

money plays in an economy (medium of exchange in trades, store of value for future

trades, and unit of account) none are essential in a general equilibrimn setting. The

unit of account aspect is not needed as the bookkeeping is perfornled by the Walrasian

auctioner. Since the supplies and demands are matched directly there is no need to

facilitate trades, and thus no role for money as a medium of exchange. And finally, as

the system reaches an equilibrium in one step, through the auctioner, there is no need

to store value for future trading rounds [150].

The reason that money is not needed can be traced to the fact that there is an

"overseer" with global information who guides the system. If we remove the centralized

communication and control exerted by this overseer, then (as in a real economy) agents

will no longer know the exact details of the overall economy. They will be forced to

makes guesses as in any learning system, and the differences in those guesses will lead

to differences in their actions [140, 141].

Such a decentralized learning-based system more closely resembles a COIN than does

a general equilibrium system. In contrast to general equilibrium systems, the three main

roles money plays in a human economy are crucial to the dynamics of such a decentralized

system [12]. This comports with the important effects in COINs of having the agents'

utility flmctions involve money (see Background section above).

3.2.2 Mechanism Design

The field of nmchanism design encompasses auctions, monopoly pricing, optimal taxation

and public good theory [138]. It is concerned with the incentives that nmst be applied

to any set of agents that interact and exchange goods [165, 2a8] in order to get those

agents to exhibit desired behavior. Usually that desired behavior concerns pre-specified

utility functions of sonm sort for each of the individual agents. In particular, mechanism

desgin is concerned with 'efficient' incentive schemes which ensure that all bidders in an

auction "benefit" from the outcome, and 'optimal' incentive schemes which maximize a

preset global utility - which for real world markets is a monotonically increasing function

in all its arguments.

One particularly important type of such incentive schemes is auctions. When many

agents interact in a common environlnent often there needs to be a structure that sup-

ports the exchange of goods or information among those agents. Auctions provide one

such (centralized) structure for managing exchanges of goods. For example, in the En-

glish auction all the agents come together and 'bid' for a good, and the price of the

good is increased until only one bidder remains, who gets the good in exchange for the

resource bid. As another example, in the Dutch auction the price of a good is decreased

10



until one buyer is willing to pay the current price.

All auctions perform the same task: match supply and demand. As such, auctions

are one of the ways in which price equilibriation among a set of interacting agents (per-

haps an equilibriation approximating general equilibrium, perhaps not) can be achieved.

However, an efficient auction mechanism does not necessarily maximize the global utility.

For example, a transaction in an English auction is efficient in that both the seller and

the buyer benefit from it. However, that the winner may well have been willing to pay

more for the good, can confound the goal of the market designer.

3.2.3 Computational Economics

'Computational economies' are economics-inspired schemes for managing the compo-

nents of a distributed computational system, which work by having a 'computational

market' guide the interactions among those components. Such a market is defined as

any structure that allows the components of tile system to exchange information on rela-

tive valuation of resources (as in an auction), establish equilibrimn states (e.g., determine

market clearing prices) and exchange resources (i.e., engage in trades).

Such computational economies can be used to investigate real economies and biolog-

ical systems [132, 35, 34, 30]. They can also be used design distributed computational

systems. For example, such computational economies are well-suited to many distributed

resource allocation problems, where each component of the system can either directly

produce the "goods" it needs or acquire them through trades with other components.

Computational markets often allow for far more heterogeneity in the components than

do conventional resource allocation schemes. Furthermore, there is both theoretical and

empirical evidence suggesting that such markets are often able to settle to equilibrium

states. For example, auctions find prices that satisfy both the seller and the buyer which

results in an increase in the utility of both (else one or the other would not have agreed

to the sale). Assuming that all parties are free to pursue trading opportunities, such

mechanisms move the system to a point where all possible bilateral trades that could

improve the utility of both parties are exhausted. Such a state of the system where

any change that increases the utility of one agent must decrease the utility of another

is called 'Pareto optimal' [90, 89]. Pareto optimality is particularly useful in systems

where a global utility function is difficult to calculate or is not available. In such cases,

trading ceases when all trades that may be beneficial are exhausted, leading to a Pareto

optimal allocation. Note however, that such allocation are not necessarily unique, and

a (potentially externally imposed) global utility may still be needed to select among

different such allocations.

One example of such a computational economy being used for resource allocation is

Huberman and Clearwater's use of a double-blind auction to solve the complex task of

controlling the temperature of a building. In this case, each agent (individual temper-

ature controller) bids to buy or sell cool or warm air. This market mechanism leads to

ll



an equitable temperature distribution in tile system [121]. Other domains where market

mechanisms were successfully applied include purchasing memory in an operating sys-

tems [52], allocating virtual circuits [80], "stealing" unused CPU cycles in a network of

computers [72, 240], predicting option futures in financial markets [189], and numerous

scheduling and distributed resource allocation problems [139, 145, 217, 227, 246,247].

Computational econonlics can also be used for tasks not tightly coupled to resource

allocation. For example, following the work of Maes [154] and Ferber [79], naum shows

how by using computational markets a large number of agents can interact and cooperate

to solve a variant of the blocks world problem [21, 22, 23]

Viewed as candidate COINs, all market-based computational economics fall short in

relying oll both centralized communication and centralized control to some degree. Often

that reliance is extreme. For example, the the systems investigated by Baum not only

have the centralized control of a market, but in addition have centralized control of all

other non-market aspects of the system. (Indeed, the market is secondary, in that it is

only used to decide which single expert among a set of candidate experts gets to exert

that centralized control at any given monlent). There has also been doubt cast on how

well computational economies perform in practice [236], and they also often require

extensive hand-tailoring in practice.

3.2.4 Game Theory

Game theory is concerned with situations where a set of players, each having a local

utility function and set of actions (strategies), analyze strategies which maximize their

own utilities [29, 90]. It is important to note that in this context, the global behavior

arises as an "accident" of the individual players' choices, in that the players do not

attempt either directly (take actions to that end) or indirectly (take actions that allow

other players to take actions to that end) to maximize the global utility. In fact, the

concept of global utility is defined as a a by-product of players' utilities, rather than be

a desirable goal state in its own right.

In a game where each player analyzes tile potential actions at a given time step,

evaluates them on the basis of corresponding expected local utility and selects the most

profitable strategy, it is important to study both convergence and equilibrium properties

of the system [78, 214]. Although there are many types of equilibrium in a game, the

most commonly used one was fornmlized by Nash [175].

In a Nash equilibrium, each player's strategy is the optimal response to the other

player's strategies. In other words, Alternately, it is a state in the game where no player

can improve its utility by changing its actions unilaterally. One of the reasons that the

Nash equilibrium is crucial in the analysis of games, is that it provides "consistent"

predictions, i.e., if all parties predict that the game will converge to a Nash equilib-

rium, no one will benefit by changing strategies [90]. Note however, that a consistent

prediction does not ensure an equilibrium point where the local utilities are maximized.
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Tile study of smallperturbationsaroundNashequilibria from a stochasticdynamics
perspectivepresentsinsighton howto selectanequilibriumstatewhenmorethan one
arepresent[156].

Thestrategiesthat eachplayerhasat its disposalarealsoreferredto aspure strategies,

i.e., one takes a particular action every time one encounters a particular state. If on the

other hand, a player chooses different strategies in a probabilistic manner, we refer to a

mixed strategy game. We now state one of the most fundamental results in game theory:

every finite game has a mixed strategy equilibrium, while it does not necessarily have

a pure strategy equilibrium [90, 175]. The relevance of this result is in guaranteeing an

equilibrium solution provided that agents are complex enough not to be restricted to

always choose the same strategy in any one situation.

When agents play a game repeatedly, one can study the agent's performance over

time and evaluate strategies accordingly. If agents learn to modify their strategies, one

refers to repeated games with memory. If on the other hand agents have a fixed set of

strategies but are either removed from the game or allowed to multiply according to their

accumulated reward, one refers to evolutionary game theory. Within this framework one

can study the long term effects of strategies such a cooperation and see if they arise

naturally and if so, under what circumstances [10, 16, 25, 73, 130, 181]; investigate

the dependence of evolving strategies to the amount of information available to the

agents [161]; study the effect of conmmnication on the evolution of cooperation [162,164];

and draw parallels with auctions and economic theory [110, 163].

3.2.5 E1 Farol Bar Problem

The "El Farol" bar problem and its variants provide a clean and simple testbed for

investigating certain kinds of interactions among agents [4, 49, 213]. In the original

version of the problem, which arose in economics, at each time step (each "night"), each

agent needs to decide whether to attend a bar. The goal of the agent in making this

decision depends on the total attendance at the bar on that night. If the total attendance

is below a preset capacity then the agent should have attended. Conversely, if the bar

is overcrowded on the given night, then the agent should not attend. (Because of this

structure, the bar problem with capacity set to 50% of the total number of agents is also

known as the 'minority game'; each agent selects one of two groups at each time step,

and those that are in the minority have made the right choice). The agents make their

choices by predicting ahead of time whether the attendance on the current night will

exceed the capacity and then taking the appropriate course of action.

What makes this problem particularly interesting is that it is impossible for all agents

to be perfectly rational in the sense of all correctly predicting the attendance on any

given night. This is because if most agents predict that the attendance will be low (and

therefore decide to attend), the attendance will actually high, while if they predict the

attendance will be high (and therefore decide not to attend) the attendance will be low.
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(In the languageof gametheory,this essentiallyamountsto thepropertythat thereare
no purestrategyNashequilibria [51,259].) Alternatively,viewingthe overallsystem
asa COIN, it hasa Prisoner'sDillema-likenature,in that rationalbehaviorby all the
individualagentsthwartsthe globalgoalof maximizingtotal enjoyment(definedasthe
sumof all agents'enjoymentandmaximizedwhenthe bar is exactlyat capacity).

This frustrationeffectis similar to whatoccursin spinglassesin physics,andmakes
the bar problemcloselyrelatedto the physicsof emergentbehaviorin distributedsys-
tems [48,49,50,262]. Researchershavealsostudiedthedynamicsof the barproblem
to investigateeconomicpropertieslikecompetition,cooperationandcollectivebehavior
andespeciallytheir relationshipto marketefficiency[61,126,205].

3.3 Biologically Inspired Systems

Properly speaking, biological systems do not involve utility functions and searches across

them with RL algorithms. However it has long been appreciated that there are many

ways in which viewing biological systems as involving searches over such functions can

lead to deeper understanding of them [210, 257]. Conversely, some have argued that the

mechanism underlying biological systems can be used to help design search algorithms

[1111.4
These kinds of reasoning which relate utility functions and biological systems have

traditionally focussed on the case of single a biological system operating in some external

environment. If we extend this kind of reasoning, to a set of biological systems that

are co-evolving with one another, then we have essentially arrived at biologically-based

COINs. This section discusses some of how previous work in the literature bears on this

relationship between COINs and biology.

3.3.1 Population Biology and Ecological Modeling

The fields of population biology and ecological modeling are concerned with the large-

scale "emergent" processes that govern the systems that consist of many (relatively)

simple entities interacting with one another [24, 103]. As usually cast, the "simple en-

tities" are members of one or more species, and the interactions are some mathenlatical

abstraction of the process of natural selection as it occurs in biological systems (involving

processes like genetic reproduction of various sorts, genotypy-phenotype mappings, inter

and intra-species competitions for resources, etc.). Population Biology and ecological

modeling in this context addresses questions concerning the dynamics of the resultant

ecosystem, and in particular how its long-term behavior depends on the details of the

interactions between the constituent entities. Broadly construed, the paradigm of ecolog-

ical modeling can even be broadened to study how natural selection and self-regulating

4See [153, 252] though for some counter-arguments to the particular claims most commonly made in

this regard.
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feedbackcreatesa stableplanet-wideecologicalenvironment--Gaia[147].

The underlying mathematical models of other fields can often be usefully modified to

apply to the kinds of systems population biology is interested in [13]. Conversely, the

underlying mathematical models of population biology and ecological modeling can be

applied to other non-biological systems. In particular, those models shed light on social

issues such as the emergence of language or culture, warfare, and economic competition

[74, 75, 91]. They also can be used to investigate more abstract issues concerning the

behavior of large complex systems with many interacting components [92, 101,157, 179,

188].

Going a bit further afield, an approach that is related in spirit to ecological modeling is

'computational ecologies'. These are large distributed systems where each component of

the system's acting (seemingly) independently results in complex global behavior. Those

components are viewed as constituting an "ecology" in an abstract sense (although nmch

of the mathematics is not derived from the traditional field of ecological modeling).

In particular, one can investigate how the dynamics of the ecology is influenced by

the information available to each component and how cooperation and comnmnication

among the components affects that dynamics [120, 122].

Although in some ways the most closely related to COINs of the current ecology-

inspired research, the field of computational ecologies has some significant shortcomings

if one tries to view it as a full science of COINs. In particular, it suffers from not

being designed to solve the inverse problem of how to configure the system so as to

arrive at a particular desired dynamics. This is a difficulty endemic to the general

program of equating ecological modeling and population biology with the science of

COINs. These fields are primarily concerned with the "forward problem" of determining

the dynamics that arises from certain choices of the underlying system. Unless one's

desired dynamics is sufficiently close to some dynamics that was previously catalogued

(during one's investigation of the forward problem), one has very little information on

how to set up the components and their interactions to achieve that desired dynamics. In

addition, most of the work in these fields does not involve RL algorithms, and viewed as a

context in which to design COINs suffers from a need for hand-tailoring, and potentially

lack of robustness and scalability.

3.3.2 Swarm Intelligence

The field of 'swarm intelligence' is concerned with systems that are modeled after so-

cial insect colonies, so that the different components of the system are queen, worker,

soldier, etc. It can be viewed as ecological modeling in which the individual entities

have extremely limited computing capacity and/or action sets, and in which there are

very few types of entities. The premise of the field is that the rich behavior of social

insect colonies arises not from the sophistication of any individual entity in the colony,

but from the interaction among those entities. The objective of current research is to
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uncoverkindsof interactionsamongthe entity typesthat leadto pre-specifiedbehavior
of soinesort.

Morespeculatively,the studyof socialinsectcoloniesmayalsoprovideinsight into
howto achievelearningin largedistributedsystems.This is becauseat the levelof the
individual insectin a colony,very little (or no) learningtakesplace. Howeveracross
evolutionarytime-scalesthe socialinsectspeciesasa wholeflmctionsas if the various
individualtypesin acolonyhad "learned"their specificflmctions.The "learning"is the
direct resultof naturalselection.(Seethe discussionon this topic in the subsectionon
ecologicalmodeling.)

Swarmintelligenceshavebeen usedto adaptivelyallocate tasks in a mail com-
pany [32],solvethe travelingsalesmanproblem[64, 65] and route data efficientlyin
dynanficnetworks[31,208,229]amongothers. Despitethis, suchintelligencesdo not
reallyconstituteageneralapproachto designingCOINs.Thereis nogeneralframework
for adaptingswarmintelligencesto maximizeparticularworldutility functions.Accord-
ingly, suchintelligencesgenerallyneedto be hand-tailoredfor eachapplication. And
after suchtailoring, it is oftenquitea stretchto view the systemas"biological"in any
sense,ratherthan just a simpleand a priori reasonable modification of some previously

deployed system.

3.3.3 Artificial Life

The two main objective of Artifical Life, closely related to one another, are understand-

ing the abstract functioning and especially the origin of terrestrial life, and creating

organisms that can meaningfully be called "alive" [143].

The first objective involves formalizing and abstracting the mechanical processes un-

derpinning terrestrial life. In particular, much of this work involves various degrees of

abstraction of the process of self-replication [41,219, 239]. Some of the more real-world-

oriented work on this topic involves investigating how lipids assemble into more complex

structures such as vesicles and membranes is one of the fundamental questions in the ori-

gin of life [63, 70, 184, 187, 177]. Many computer models have been proposed to simulate

this process, though most suffer fi'om overly simplifying the molecular morphology.

More generally, work concerned with the origin of life can constitute an investigation of

the functional self-organization that gives rise to life [158]. In this regard, an important

early work on functional self-organization is the lambda calculus, which provides an

elegant framework (recursively defined functions, lack of distinction between object and

function, lack of architectural restrictions) for studying computational systems [55]. This

framework can be used to develop an artificial chemistry "function gas" that displays

complex cooperative properties [83].

The second objective of the field of Artificial Life is less concerned with understanding

the details of terrestrial life per se than of using terrestrial life as inspiration for how to

16



designlivingsystems.Forexample,motivatedby theexistence(andpersistence)of com-
puter viruses,severalworkershavetried to designan immunesystenlfor computersthat
will develop"antibodies"andhandlevirusesboth morerapidlyandmoreefficientlythan
otheralgorithms[85,131,220].Moreenerally,becauseweonly haveonesamplingpoint
(lifeonEarth), it isverydifficult to preciselyformulatetheprocessbywhichlifeemerged
By creatinganartificial worldinsideacomputerhowever,it ispossibleto studyfar more
generalformsof life [192,193,194].Seealso [253]wheretheargumentis presentedthat
therichestwayof approachingtheissueofdefining"life" isphenomenologically,in terms
of self-dissimilarscalingpropertiesof thesystem.

3.3.4 Training cellular automata with genetic algorithms

Cellular automata can be viewed as digital abstractions of physical gases [33, 77, 248,

249]. Formally, they are discrete-time recurrent neural nets where the neurons live on a

grid, each neuron has a finite number of potential states, and inter-neuron connections

are (usually) purely local. (See below for a discussion of recurrent neural nets.) So the

state update rule of each neuron is fixed and local, the next state of a neuron being a

function of the current states of it and of its neighboring elements.

The state update rule of (all the neurons making up) any particular cellular automaton

specifies the mapping taking the initial configuration of the states of all of its neurons

to the final, equilibriunl (perhaps strange) attractor configuration of all those neurons.

So consider the situation where we have a desired such mapping, and want to know an

update rule that induces that mapping. This is a search problem, and can be viewed as

similar to the inverse problem of how to design a COIN to achieve a pre-specified global

goal, albeit a "COIN" whose nodal elements do not use RL algorithms.

Genetic algorithms are a special kind of search algorithm, based on analogy with the

biological process of natural selection via recolnt)ination and mutation of a genome [166].

There is no formal theory justifying genetic algorithms as search algorithms [152, 252]

and very few empiricM comparisons with other search techniques that might justify their

use. Nonetheless, genetic algorithms (and 'evolutionary computation' in general) have

been studied quite extensively. In particular, they have been used to (try to) solve

the inverse problem of finding update rules for a cellular automaton that induce a pre-

specified mapping from its initial configuration to its attractor configuration. To date,

they have used this way only for extremely simple configuration mappings, mappings

which can be trivially learned by other kinds of systems. Despite the simplicity of these

mappings, the use of genetic Mgorithms to try to train cellular automata to exhibit them

has achieved little success [168, 167, 58, 59].
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3.4 Physics-Based Systems

3.4.1 Statistical Physics

Equilibrium statistical physics is concerned with the stable state character of large num-

bers of very simple physical objects, interacting according to well-specified local deter-

ministic laws, with probabilistic noise processes superimposed [5, 195]. Typically there is

no sense in which such systems can be said to have centralized control, since all particles

contribute comparably to the overall dynamics.

Aside from mesoscopic statistical physics, the numbers of particles considered are

usually on the order of 1023, and the particles themselves are extraordinarily simple,

typically having only a few degrees of freedom. Moreover, the noise processes usually

considered are highly restricted, being those that are forlned by "baths", of heat, parti-

cles, and the like. Similarly, ahnost all of the field restricts itself to deterministic laws

that are readily encapsulated in Hamilton's equations (Schrodinger's equation and its

field-theoretic variants for quantum statistical physics). In fact, much of equilibrium

statistical physics isn't even concerned with the dynamic laws by themselves (as for ex-

ample is stochastic Markov processes). Rather it is concerned with invariants of those

laws (e.g., energy), invariants that relate the states of all of the particles. Trivially then,

deterministic laws without suchreadily-discoverable invariants are outside of the purview

of nmch of statistical physics.

One potential use of statistical physics for COINs involves taking the systems that

statistical physics analyzes, especially those analyzed in its condensed matter variant

(e.g., spin glasses [224, 225]), as simplified models of a class of COINs. This approach

is used in some of the analysis of the Bar problem (see above). It is used more overtly

in (for example) the work of Galam [93], in which the equilibrium coalitions of a set of

"countries" are modeled in terms of spin glasses. This approach cannot provide a general

COIN framework though. In addition to the caveats listed above, this is due to its not

providing a general solution to inverse problems and its lack of RL algorithms. 5

Another contribution that statistical physics can make is with the mathematical tech-

niques it has developed for its own purposes, like mean field theory, self-averaging ap-

proximations, phase transitions, Monte Carlo techniques, the replica trick, and tools to

analyze the thermodynamic limit in which the number of particles goes to infinite. Al-

though such techniques have not yet been applied to COINs, the have been successfully

applied to related fields. This is exemplified by the use of the replica trick to analyze

two-player zero-sum games with random payoff matrices in the thermodynamic limit of

the number of strategies in [26]. Other examples are the numeric investigation of iter-

5In regard to the latter point however, it's interesting to speculate about recasting statistical physics

as a COIN, by having each of the particles in the physical system run an IlL algorithm that perfectly

optimizes the "utility function" of its Lagrangian, given the "actions" of the other particles. In this

perspective, many-particle physical systems are multi-stage games that are at Nash equilibrium in each

stage.
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ated prisoner'sdilemmaplayedon a lattice [233],the analysisof stochasticgamesby
expressingof deviationfrom rationality in tile form of a "heatbath" [156],andthe use
of topologicalentropyto quantifytile complexityof a votingsystemstudiedin [159].

Other work in the statisticalphysicsliterature is formally identicalto that in other
fields,but presentsit from a novelperspective.A goodexampleof this is [218]which
analyzesuseof a singlesimpleproportionalRL algorithm for control of a spatially
extendedsystem.(All without a singlemcntionof thefield of reinforcementlearning.)

3.4.2 Action Extremization

Much of the theory of physics can be cast as solving for the extremization of an actional,

which is a functional of the worldline of an entire (potentially many-component) sys-

tem across all time. The solution to that extremization problem constitutes the actual

worldline followed by the system. In this way the calculus of variations can be used to

solve for the worldline of a dynamic system. As an example, simple Newtonian dynamics

can be cast as solving for the worldline of the system that extremizes a quantity called

"the Lagrangian", which is a function of that worldline and of certain parameters (e.g.,

the "potential energy") governing tim system at hand. In this instance, the calculus of

variations simply results in Newton's laws.

If we take the dynamic system to be a COIN, we are assured that its worldline

automatically optimizes a "global goal" consisting of the value of the associated actional.

If we change physical aspects of the System tliat determine the functional form of the

actional (e.g., change the system's potential energy function), then we change the global

goal, and we are assured that our COIN optimizes that new global goal.

The challenge in exploiting this to solve the inverse problem of how to design physical

COINs is in translating an arbitrary provided global goal for the COIN into a paralneter-

ized actional. Note that that actional must govern the dynamics of the physical COIN,

and the paranmters of the actional nmst be physical variables in the COIN, variables

whose values we can modify.

3.4.3 Active Walker Models

The field of active walker models [20,104, 105] is concerned with modeling "walkers" (be

they human walkers or instead simple physical objects) crossing fields along trajectories,

where those trajectories are a function of several factors, including in particular the

trails already worn into the field. Often the kind of trajectories considered are those

that can be cast as solutions to actional extremization problems so that the walkers can

be explicitly viewed as agents optimizing a private utility.

One of the primary concerns with the field of active walker models is how the trails

worn in the field change with time to reach a final equilibrium state. The problem

of how to design the cement pathways in the field (and other physical features of the
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field) sothat tile final pathsactually followedby tile walkerswill havecertaindesirable
characteristicsis thenoneof solvingfor parametersof theactionalthat will resultin tile
desiredworldline. This is a specialinstanceof the inverseproblemof howto designa
COIN.

Using active walker models this way to design COINs, like action extremization ill

general, probably has limited applicability. Also, it is not clear how robust such a design

approach might be, or whether it would be scalable and exempt from the need for hand-

tailoring.

3.5 Other Related Subjects

This subsection presents a "catch-all" of other fields that have little in common with one

another except that they bear some relation to COINs.

3.5.1 Stochastic Fields

An extremely well-researched body of work concerns the matlmmatical and nunleric

behavior of systems for which the probability distribution over possible future states

conditioned on preceding states is explicitly provided. This work involves many _pects

of Monte Carlo numerical algorithms [176], all of Markov Chains [86, 180, 226], and

especially Markov fields, a topic that encompasses the Chapman-Kohllogorov equations

[94] and its variants: Liouville's equation, the Fokker-Plank equation, and the Detailed-

balance equation in particular. Non-linear dynamics is also related to this body of

work (see the synopsis of iterated function systems below and the synopsis of cellular

automata above), as is Markov competitive decision processes (see the synot)sis of game

theory above).

Formally, one can cast the problem of designing a COIN as how to fix each of the

conditional transition probability distributions of the individual elements of a stochastic

field so that the aggregate behavior of the overall system is of a desired form. 6 Unfor-

tunately, almost all that is known in this area instead concerns the forward problem, of

inferring aggregate behavior from a provided set of conditional distributions. Although

such knowledge provides many "bits and pieces" of information about how to tackle the

inverse problem, those pieces collectively cover only a very small subset of the entire

space of tasks we might want the COIN to perform. In particular, they tell us very little

about the case where the conditional distribution encapsulates RL algorithms.

6In contrast, in the field of Markov decision processes, discussed in [47], the full system may be a

Markov field, but the system designer only sets the conditional transition probability distribution of a

few of the field elements at most, to the appropriate "decision rules". Unfortunately, it is hard to imagine

how to use the results of this field to design COINs because of major scaling problems. Any decision

process must accurately model likely future modifications to its own behavior -- often an extremely

daunting task [153]. What's worse, if multiple such decision processes are running concurrently in the

system, each such process must also model the others, in their full complexity.
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3.5.2 Iterated Function Systems

The technique of iterated function systems [18, ?] grew out of tile field of nonlinear

dynamics [197, 234, 228, ?]. In such systems a function is repeatedly and recursively

applied to itself. The most famous example is the logistic map, xn+] = rXn(1 - Xn) for

some r between 0 and 4 (so that x stays between 0 and 1). More generally the function

along with its arguments can be vector-valued. In particular, we can construct such

functions out of affine transformations of points in a Euclidean plane.

Iterated functions systems have been applied to image data. In this case the succes-

sive iteration of the function generically generates a fractal, one whose precise character

is determined by the initial iteration-1 image. Since fractals are ubiquitous in natural

images, a natural idea is to to try to encode natural images as sets of iterated func-

tion systems spread across tile plane, thereby potentially garnering significant image

compression. The trick is to manage the inverse step of starting with the image to be

compressed, and determining what iteration-1 image(s) and iterating function(s) will

generate an accurate approximation of that image.

In the language of nonlinear dynamics, we have a dynamic system that consists of a

set of iterating functions, together with a desired attractor (the image to be compressed).

Our goal is to determine what values to set certain paralneters of our dynamic system

to so that the system will have that desired attractor. The potential relationship with

COINs arises from this inverse nature of the problem tackled I)y iterated fimction sys-

teins. If tile goal for a COIN c._n be cast as its relaxing to a particular att1:actor, and

if the distributed computational elements are isomorphic to iterated fimctions, then the

tricks used in iterated functions theory could be of use.

Although the techniques of iterated function systems might prove of use in designing

COINs, they are unlikely to serve as a generally applicable approach to designing COINs.

In addition, they do not involve RL algorithms, and often involve extensive hand-tuning.

3.5.3 Recurrent Neural Nets

A recurrent neural net consists of a finite set of "neurons" each of which has a real-valued

state at each moment in tinm. Each neuron's state is updated at each moment in time

based on its current state and that of some of the other neurons in the system. The

topology of such dependencies constitute the "inter-neuronal connections" of the net,

and the associated parameters are often called the "weights" of the net. The dynamics

can be either discrete or continuous (i.e., given by difference or differential equations).

Recurrent nets have been investigated for many purposes [46, 115, 95, 185, 260].

One of tile more famous of these is associative memories. The idea is that given a pre-

specified pattern for the (states of the neurons in the) net, there may exist inter-neuronal

weights which result in a basin of attraction focussed on that pattern. If this is the case,

then the net is equivalent to an associative memory, in that a complete pre-specified
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patternacrossall neuronswill emergeunderthenet'sdynamicsfrom aw initial pattern
that partially matchesthe full pre-specifiedpattern. In practice,onewishesthe net to
simultaneouslypossessmaw suchpre-specifiedassociativememories.Therearemany
schemesfor "training" a recurrentnet to havethisproperty,includingschemesbasedon
spinglasses[112,113,114]andschemesbasedon gradientdescent[198].

As can the fields of cellularautomataand iterated function systems,the field of
recurrentneuralnetscanbeviewedasconcerningcertainvariantsof COINs. Alsolike
thoseother fieldsthough,recurrentneuralnetshasshortcomingsif onetriesto viewit
as a generalapproachto a scienceof COINs. In particular, recurrentneuralnetsdo
not involveRL algorithms,andtraining themoftensuffersfromscalingproblems.More
generally,in practicetheycanbehardto train well without hand-tailoring.

3.5.4 Network Theory

Packet routing in a data network [27, 116, 221, 241] presents a particularly interesting

domain for the investigation of COINs. In particular, with such routing:

(i) the problem is inherently distributed;

(ii) for all but the most trivial networks it is impossible to employ global control ;

(iii) the routers have only access to local inforination (routing tables);

(iv) it constitutes a relatively clean and easily modified

experimental testbed; and

(v) there are potentially major bottlenecks induced by 'greedy'

behavior on the part of the individual routers, which behavior

constitutes a readily investigated instance of the TOC.

Many of the apl)roaches to packet routing incorporate a variant on RL [39, 44, 53,

149, 155]. Q-routing is perhaps the best known such approach and is based on routers

using reinforcement learning to select the best path [39]. Although generally successful,

Q-routing is not a general scheme for inverting a global task. This is even true if one

restricts attention to the problem of routing in data networks -- there exists a global

task in such problems, but that task is directly used to construct the algorithm.

A particular version of the general packet routing problem that is acquiring increased

attention is the Quality of Service (QoS) problem, where different communication pack-

ets (voice, video, data) share the same bandwidth resource but have widely varying

importances both to the user and (via revenue) to the bandwidth provider. Determining

which packet has precedence over which other packets in such cases is not only based

on priority in arrival time but more generally on the potential effects on the income of

the bandwidth provider. In this context, RL algorithms have been used to determine

routing policy, control call admission and maxiInize revenue by allocation the available

bandwidth efficiently [44, 155].

Many researchers have exploited the noncooperative game theoretic understanding

of the TOC in order to explain the bottleneck character of empirical data networks
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behaviorandsuggestpotentialalternativesto current routingschemes[?,69,136,142,
144,182,183,215].Closelyrelatedisworkonvarious"pricing"-basedresourceallocation
strategiesin congestabledatanetworks[151].This workisat leastpartially basedupon
currentunderstandingof pricing in toll lanes,and traffic flow in general(seebelow).
All of theseapproachesareparticularly of interestwhencombinedwith the RL-based
schemesmentionedjust above.Dueto thesefactors,muchof the current researchon
a generalframeworkfor COINsis directedtowardthepacket-routingdomain(seenext
section).

3.5.5 Traffic Theory

Traffic congestion typifies the TOC public good problem: everyone wants to use the

same resource, and all parties greedily trying to optimize their use of that resource not

only worsens global behavior, but also worsens their own private utility (e.g., if everyone

disobeys traffic lights, everyone gets stuck in traffic jams). Indeed, in the well-known

Braess' paradox [19], keeping everything else constant -- including the number and

destinations of the drivers -- but opening a new traffic path can increase everyone's time

to get to their destination. (Viewing the overall system as in instance of the Prisoner's

dilemma, this paradox in essence arises through the creation of a novel 'defect-defect'

option for the overall system.) Greedy behavior on the part of individuals also results

in very rich global dynamic patterns, such as stop and go waves and clusters [106, 107].

Much of traffic theory employs and investigates tools that have previously been ap.

plied in statistical physics [106, 133, 134, 186, 191] (see subsection above). IlL particular,

the spontaneous formation of traffic jams provides a rich testbed for studying the emer-

gence of complex activity from seemingly chaotic states [106, 108]. Furthermore, the

dynamics of traffic flow is particular amenable to the application and testing of many

novel numerical methods in a controlled environment [15, 28, 209]. Many experimental

studies have confirmed the usefulness of applying insights gleaned from such work to real

world traffic scenarios [106, 174, 173].

3.5.6 Topics from further afield

Finally, there are a number of other fields that, while either still nascent or not extremely

closely related to COINs, are of interest in COIN design:

Amorphous computing: Amorphous computing grew out of the idea of replacing

traditional computer design, with its requirements for high reliability of the components

of the computer, with a novel approach in which widespread unreliability of those com-

ponents would not interfere with the computation [1]. Some of its more speculative

aspects are concerned with "how to program" a massively distributed, noisy system

of components which may consist in part of biochemical and/or biomechanical compo-

nents [135, 245]. Work here has tended to focus on schemes for how to robustly induce
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desired geometric dynamics across the physical body of the amorphous computer -- issue

that are closely related to morphogenesis, and thereby lend credence to the idea that

biochemical components are a promising approach. Especially in its limit of computers

with very small constituent components, amorphous computing also is closely related to

the fields of nanotechnology [66] and control of smart matter (see below).

Control of smart matter:. As the prospect of nanotechnology-driven mechanical

systems gets more concrete, the daunting problem of how to robustly control, power,

and sustain protean systems made up of extremely large sets of nano-scale devices looms

more important [98, 99, 109]. If this problem were to be solved one would in essence

have "smart matter". For example, one would be able to "paint" an airplane wing with

such matter and have it improve drag and lift properties significantly.

Morphogenesis: How does a leopard embryo get its spots, or a zebra embryo its

stripes? More generally, what are the processes underlying morphogenesis, in which

a body plan develops among a growing set of initially undifferentiated cells? These

questions, related to control of the dynamics of chemical reaction waves, are essentially

special cases of the more general question of how ontogeny works, of how the genotype-

phenotype mapping is carried out in developnmnt. The answers involve homeobox (as

well as many other) genes [17, 68, 128, 82, 237]. Under the presumption that tile

.functioningof such genes isat least in part designed to facilitategenetic changes that

increase a species' fitness, that flmctioning facilitates solution of tile inverse l),'oi)lem, of

finding small-scale changes (to DNA) that will result in "desired" large scale effects (to

body plan) when propagated across a growing distributed system.

Self Organizing systems The (:oncept of self-organization and self-organized crit-

icality [14] was originally developed to help understand why many distributed physical

systems are attracted to critical states that possess long-range dynamic correlations in

the large-scale characteristics of the system. It provides a powerful framework for aualyz-

ing both biological and economic systems. For example, natural selection (particularly

punctuated equilibrium [71, 97]) can be likened to self-organizing dynamical system,

and some have argued it shares many the properties (e.g., scale invariance) of such sys-

tems [60]. Similarly, one can view the economic order that results from the actions of

human agents as a case of self-organization [62]. The relationship between complexity

and self-organization is a particularly important one, in that it provides the potential

laws that allow order to arise from chaos [129].

Small worlds (6 Degrees of Separation): In many distributed systems where each

component can interact with a small number of "neighbors", an important problem is how

to propagate information across the system quickly and with minimal overhead. On the

one extreme the neighborhood topology of such systems can exist on a completely regular

grid-like structure. On the other, the topology can be totally random. In either case,

certain nodes may be effectively 'cut-off' from other nodes if the information pathways

between them are too long. Recent work has investigated "small worlds" networks
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(sometimes called 6 degrees of separation) in which underlying grid-like topologies are

"doped" with a scattering of long-range, random connections. It turns out that very little

such doping is necessary to allow for the system to effectively circumvent tile information

propagation problem [160, 244].

Control theory: Adaptive control [6,204], and in particular adaptive control involv-

ing locally weighted RL Mgorithms [7, 170], constitute a broadly applicable framework

for controlling small, potentially inexactly modeled systems. Augmented by techniques

in tile control of chaotic systems [54, ?], they constitute a very successful way of solving

the "inverse problem" for such systems. Unfortunately, it is not clear how one could

even attempt to scale such techniques up to the massively distributed systems of interest

in COINs. The next section discusses in detail some of the underlying reasons why the

purely model-based versions of these approaches are inappropriate as a framework for

COINs.

4 A FRAMEWORK DESIGNED FOR COINs

Summarizing the discussion to this point, it is hard to see how any already extant

scientific field can be modified to encompass systems meeting all of the requirements of

COINs listed at the beginning of Section 3. This is not too surprising, since none of those

fields were explicitly designed to analyze COINs. This sectiml first motivates in general

terms a framework that is explicitly designed for analyzing COINs. It then presents the

formal nomenclature of that framework. This is followed by deriving some of the central

theorems of that framework. Finally, we present experiments that illustrate the power

the fl'amework provides for ensuring large world utility in a COIN.

Unfortunately, for reasons of space, the discussion here is abbreviated and laconic.

A nmch more detailed discnssion, including intuitive arguments, proofs and flflly formal

definitions of the concepts discussion in this section, can be found in [250].

4.1 Problems with a model-based approach

What mathematics might one employ to understand and design COINs? Perhaps the

most natural approach, related to the stochastic fields work reviewed above, involves the

following three steps:

1) First one constructs a complete stochastic model of the COIN's dynamics, a model

parameterized by a vector _. As an example, _ could fix the utility functions of the

individual agents of the COIN, aspects of their RL algorithms, which agents conmmnicate

with each other and how, etc.

2) Next we solve for the flmction f(O) which maps the parameters of the model to

the resulting stochastic dynamics.

3) Cast our goal for the system as a whole as achieving a high expected value of some
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"world utility". Then as our final step we would have to solve tile inverse problem: we

would have to search for a 0 which, via f, results in a high value of E(world utility I 0).

Let's examine in turn some of the challenges each of these three steps entrain:

I) We are primarily interested in very large, very complex systems, which are noisy,

faulty, and often operate in a non-stationary environment. Moreover, our "very complex

system" consists of many RL algorithms, all potentially quite complicated, all running

sinmltaneously. Clearly coming up with a model that captures the dynamics of all of this

in an accurate manner will often be extraordinarily difficult. Moreover, unfortunately,

often the level of versimiltude required of the model will be quite high. For example,

unless the modeling of the faulty aspects of the system were quite accurate, the model

would likely be "brittle", and overly sensitive to which elements of the COIN were and

were not operating properly at any given time.

II) Even for models much simpler than the ones called for in (I), solving explicitly for

the function / can be extremely difficult. For example, much of Markov Chain theory

is an attempt to broadly characterize such mappings. However as a practical matter,

usually it can only produce potentially useful characterizations when the underlying

models are quite inaccurate simplifications of the kinds of models produced in step (I).

III) Even if one can write down an f, solving tile associated inverse problem is often

impossible in t)ractice.

IV) In addition to these difficulties, there is a more general I)roblem with the model-

based approach. We wish to perform our analysis on a "high level". Our thesis is that

due to the robust and adaptive nature of the individual agents' RL algorithms, there

will be very broad, easily identifiable regions of 0 space all of which result in excellent

E(world utility I 0), and that these regions will not depend on the precise learning

algorithms used to achieve the low-level tasks (cf. the list at the beginning of Section 3).

To fully capitalize on this one would want to be able to slot in and out different learning

algorithms for achieving the low-level tasks without having to redo our entire analysis

each time. However in general this would be possible with a model-based analysis only

for very carefully designed models (if at all). The problem is that the result of step

(3), the solution to the inverse problem, would have to concern aspects of the COIN

that are (at least approximately) invariant with respect to the precise low-level learning

algorithms used. Coming up with a model that has this property while still avoiding

problems (I-III) is usually an extremely daunting challenge.

Fortunately, there is an alternative approach which avoids modeling and its associated

difficulties. We Call any framework based on this alternative a descriptive framework.

In such a framework one identifies certain salient characteristics of COINs, which are

characteristics that one strongly expects to find in COINs that have large world utility.

Under this expectation, one assumes that if a COIN is explicitly modified to have the

salient characteristics, perhaps in response to observations of its run-time behavior, then

its world utility will benefit. If those salient characteristics are (relatively) easy to induce
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in a COIN, then this assumption provides a ready way to cause that COIN to have large

world utility. If in addition the salient characteristics can be induced with little or no

modeling (e.g., via heuristics that aren't rigorously and formally justified), then the

descriptive framework can be used to improve world utility without recourse to detailed

modeling.

4.2 Nomenclature

There exist many ways one might try to design a descriptive framework. In this subsec-

tion we present nomenclature needed for a (very) cursory overview of one of them. (See

[250] for a more detailed exposition, including formal proofs.)

4.2.1 Preliminary Definitions

1) We refer to an RL algorithm by which an individual component of the COIN modifies

its behavior as a microlearning algorithm. We refer to the initial construction of the

COIN, potentially based upon salient characteristics, as the COIN initialization. We

use the phrase macrolearning to refer to externally imposed run-time modifications to

tile COIN which are based on statistical inference concerning salient characteristics of

the running COIN.

2) For convenience, we take time t to be discrete and confined to the integers, Z.

When referring to COIN initialization, we implicitly have a lower bound on t, which

without loss of generality we take to be _< 0.

3) All variables that have any effect on the COIN are identified as components of

Euclidean-vector-valued states of various discrete nodes. So for example, if our COIN

consists in part of an "agent" running a set of microlearning algorithm, the precise

configuration of that agent at any time t, including all variables in its learning algorithm,

all externally visible actions, internal parameters, values observed by its probes of the

surrounding enviromnent, etc., all constitute the state vector of a node representing that

agent. We define _-,i,t E Z_, t to be the Euclidean vector giving the state of node 7/at time

t. The i'th component of that vector is indicated by _v,t;i'

Discussion: In practice, many COINs will involve variables that are most naturally

viewed as discrete and symbolic. In such cases, we nmst exercise some care in how we

choose to represent those variables as components of Euclidean vectors. There is nothing

new in this; the same issue arises in modern work on applying neural nets to inherently

symbolic problems. With COINs we will usually employ the same resolution of this issue

employed in neural nets, namely representing the possible values of the discrete variable

with a unary representation in a Euclidean space. Just as with neural nets, vahms of

such vectors that do not lie on the vertices of the unit hypercube are not nmaningflfl,

strictly speaking. Fortunately though, just as with neural nets, there is almost always a

most natural way to extend the definitions of any flmction of interest (like world utility)
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so that it is well-defined even for vectors not lying on those vertices. This allows us to

meaningfully define partial derivatives of such flmctions with respect the components of

_, partial derivatives that we will evaluate at the corners of the unit hypercube.

4) For notational convenience, we define _-.t E Z t to be the vector of the states of

all nodes at time t; _-_,t E Z_, t to be the vector of the states of all nodes other than

at time t; and _ -- __, E Z to be the entire vector of the states of all nodes at all

times. Z is infinite-dimensional in general, and usually assumed to be a Hilbert space.

Also for notational convenience, we define gradients using 0-shorthand. So for example,

cOCtF(__,) is the vector of the partial derivative of F(__) with respect to the components

of _-,t" Finally, we will sometimes treat the symbol "t" specially, as delineating a range

of components of __. So for example an expression like "_-,t<t' refers to all components

t witht<t'.

5) We take the universe in which our COIN operates to be completely deterministic.

This is certainly the case for any COIN that operates in a digital system, even a system

that emulates analog and/or stochastic processes (e.g., with a pseudo-random mnnber

generator). More generally, this determinism reflects the fact since the real world obeys

(deternfinistic) physics, any real-world system, be it a a COIN or something else, is,

ultimately, embedded in a deterministic system. 7

6) Formally, to reflect this determinism, first we bundle all variables we're not directly

considering - but which nonetheless affect the dynamics of the system as components

of some catch-all environment node. So for example any "noise processes" and the

like affecting the COIN's dynainics are taken to be inputs from a deterministic, very

high-dimensional environment that is potentially chaotic and is never directly observed

[?]. Given such an environment node, we then stipulate that for all t, t' > t, _,t sets _,t'

uniquely.

7) We express the dynamics of our system by writing _-,t'>t = C(_-,t)" (In this paper

there will be no need to be more precise and specify the precise dependency of C(.) on t

and/or t'.) We define {C} to be a set of constraint equations enforcing that dynanfics,

and also, more generally, fixing the entire manifold C of vectors __E _Z that we consider

to be 'allowed'. So C is a subset of the set of all ( E Z that are consistent with

the deterministic laws governing the COIN, i.e., that obey _--,t'>_t = C(_,t) _/ t_ t I. We

generalize this notation in the obvious way, so that (for example) C,t>_to is the manifold

consisting of all vectors _--,t>_toE Z t>_t o that are projections of a vector in C.

Discussion: Note that C,t>_to is paraineterized by _-,to' due to determinism. Note also

that whereas C(.) is defined for any argument of the form _-,t E Z t for some t (i.e., we

can evolve any point forward in time), in general not all _-,t E Z t lie in C,t. In particular,

7This determinism holds even for systems with an explicitly quantum mechanical character. Quantum

mechanical systems evolve according to Schrodinger's equation, which is purely deterministic; as is now

well-accepted, the "stochastic" aspect of quantum mechanics can be interpreted as an epiphenomenon of

Schrodmger s equatmn that arises when the Hamiltonian has an "observatmna or "entangling" coupling

between some of its variables [?, ?, ?], a coupling that does not obviate the underlying determinism.

28



there may be extra restrictions constrainiug the possible states of the system beyond

those arising from its need to obey the relevant dynamical laws of physics.

Discussion: We do not want to tlave Z be the phase space of every particle in the

system. We will instead usually have Z consist of variables that, although still evolving

deterministically, exist at a larger scale of granularity than that of individual particles

(e.g., thermodynamic variables in the thermodynamic limit). However we will often

be concerned with physical systems obeying entropy-driven dynanfic processes that are

contractive at this high level of granularity. Examples are any of the many-to-one map-

pings that can occur in digital computers, and, at a finer level of graimlarity, any of the

error-correcting processes in the electronics of such a computer that allow it to operate

in a digital fashion. Accordingly, although the dynamics of our system will always be

deterministic, it need not be invertible.

Discussion: Intuitively, in our mathematics, all behavior across time is pre-fixed. The

COIN is a single fixed worldline through Z with no "uufolding of the future" as the

die underlying a stochastic dynamics get cast. This is consistent with the fact that we

want the formalism to be purely descriptive, relatiug different properties of any single,

fixed COIN's history. We will often informally refer to "changing a node's state at

a particular time"., or to a microlearner's "choosing from a ._et of options", and the

like. Formally, in all such phrases we are really comparing (lifferent worldlines, with the

indicated modifi<'ation distinguishing those worldlines.

Discussion: Since the dynanfics of any real-world COIN is deternfinistie, so is the dy-

namics of any component of the COIN, and in particular so is any learning algorithm

running in the COIN, ultimately. However that does not mean that those determin-

istic components of the COIN are not allowed to be "based on", or "motivated by"

probability-based concepts. The motivation behind the algorithms run by the compo-

nents of the COIN does not change their underlying nature. Indeed, in our experiments

below, we explicitly have the reinforcelnent learning algorithms that are trying to max-

imize private utility operate in a (pseudo-) probabilistic fashion, with pseudo-random

number generators and the like.

More generally, the deterministic nature of our fi'amework does not preclude our su-

perimposing probabilistic elements on top of that framework, and thereby generate a

stochastic extension of our framework. Exactly as in statistical physics, a stochastic na-

ture can be superimposed on top of our space of deterministic worldlines. Formally, this

is what is done in conventional time-series analysis (or for that matter all of conventional

statistics), where the superimposing of a probability distribution across a space of possi-

ble histories of the universe in no way violates the physical fact that each of the histories

taken individually obeys the (deterministic) laws of physics. Indeed, the "macrolearning"

algorithms we investigate below implicitly involve such a superimposing; they impliietly

assume a probabilistic coupling between the (statistical estimate of the) correlation co-

efficient connecting the states of a pair of nodes and whether those nodes are in the one
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another's"effectset". In this paperthough,weconcentrateon the mathematicsthat
obtainsbeforesuchprobabilisticconcernsaresuperimposed.Whereastile deterministic
analysispresentedhereis relatedto game-theoreticstructureslike Nashequilibria, a
full-blownstochasticextensionwould in somewaysbe morerelatedto structureslike
correlatedequilibria[9].

8) Formally,there is a lot of freedomin setting tile boundarybetweenwhat wecall
"the COIN", whosedynamicsis determinedby C, and what we call "macrolearning",

which constitutes perturbations to the COIN instigated from "outside the COIN", and

which therefore is not reflected in C. As an example, in nmch of this paper, we have

clearly specified microlearners which are provided fixed private utility functions that they

are trying to maximize. In such cases usually we will implicitly take C to be the dynamics

of the system, microlearning and all, for fixed private utilities that are specified in __. For

example, __ could contain, for each microlearner, the bits in an associated computer

specifying the subroutine that that microlearner can call to evaluate what its private

utility would be for some full worldline __.

Macrolearning overrides C, and in this situation it refers (for example) to any statis-

tical inference process that modifies the private utilities at run-time to (try to) induce

the desired salient characteristics. Concretely, in the preceding example, macrolearning

could involve modifications to the bits bi specifying each microlearner i's private utility,

modifications that are l_.ot accounted for in C, and that are potentially based on variables

that are not reflected in Z. Since C does not reflect such macrolearning, when trying

to ascertain C based on empirical observation (_s for example when determining how

best to modify the private utilities), we have to take care to distinguish which part of

tile system's observed dynamics is due to C and which part instead reflects externally

imposed modifications to the private utilities.

More generally though, other boundaries between the COIN and macrolearning-ba.sed

perturbations to it are possible, reflecting other definitions of Z, and other interpreta-

tions of the elements of each __ C Z. For example, it may be that in addition to the

dynamics of other bits, C also encapsulates the dynamics of tile bits bi. In this case, we

could view each private utility as still being fixed, but rather than take the bits bi as

"encoding" the private utility of microlearner i, we would treat them as "parameters"

of that (fixed) private utility. In other words, formally, they constitute an extra set

of arguments to i's private utility. Alternatively we could simply say that our private

utilities are time-indexed, with i's private utility at tinm t determined by bi,t, which in

turn is determined by evolution under C. Under either interpretation of private utility,

any modification to those bits under C constitutes dynamical laws by which the pa-

rameters of the microlearners evolve in time. In this case, macrolearning would refer to

some further removed process that modifies the evolution of the system in a way not

encapsulated in C.

For such alternative definitions of C/Z, we have a different boundary between the
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COINandmacrolearning,andwemustscrutinizedifferentaspectsof theCOIN'sdynam-
icsto infer C. Whatever the boundary, the mathematics of the descriptive framework,

including the mathematics concerning the salient characteristics, is restricted to a system

evolving according to C, and explicitly does not account for macrolearning. This is why

the strategy of trying to improve world utility by using macrolearning to try to induce

salient characteristics is ultimately based oll an assumption rather than a proof.

9) We are provided with some Von Neumann world utility G : Z -_ T_ that ranks

the various conceivable worldlines of the COIN. Note that since the environment node

is never directly observed, we implicitly assume that the world utility is not directly

(!) a function of its state. Our mathematics will not involve G alone, but rather the

the relationship between G and various sets of personal utilities gv,t : Z × Z _ T_.

Intuitively, as discussed below, for many purposes such personal utilities are equivalent

to the private utilities mentioned above.

Discussion: These utility definitions are very broad. In particular, they do not require

casting of the utilities as discounted sums. Note also that our world utility is not indexed

by t. Again reflecting the descriptive, worldline character of the formalism, we simply

assign a single value to an entire worldline of the system, implicitly assuming that one

can always say which of two candidate worldlines are preferable. So given some "present
- !

time" to, issues like which of two "potential futures" _-,t>to' _--,t>tois preferable are resolved

by evaluating the relevant utility at two associated points _ and _! , where the t > to

components of those points are the futures indicated and the two points share the same

(usually implicit) t _< to "past" components.

This time-independence of G automatically avoids formal problems that can occur

with general (i.e., not necessarily discounted sum) time-indexed utilities, problems like

having what's optimal at one moment in time conflict with what's optimal at other mo-

ments in time. s For personal utilities such formal probelms are often irrelevant however.

We as COIN designers must be able to rank all possible worldlines of the system to have

a well-defined design task. However if a particular microlearner's goal keeps changing

in an inconsistent way, that simply means that that microlearner will grow "confused".

From our perspective as COIN designers, there is nothing a priori unacceptable about

such confusion. It may even result in better performance of the system as a whole, in

whic case we would actually want to induce it. Nonetheless, for simplicity, in most of

this paper we will have all gT;,t be independent of t, just like world utility.

World utility is defined as that fimction that we are ultimately interested in optimiz-

ing. In conventional RL it is a discounted sum, with the sum starting at time t. In

other words, conventional RL has a time-indexed world utility. It might seem that in

8Such conflicts can be especially troublesome when they interfere with our defining what we mean by

an "optimal" set of actions by the nodes at a particular time t. Their ability to interfere in this way is
due to the fact that the effects of the actions by the nodes depends on the future actions of the nodes.

However if they too are to be optimal, those future actions will depend on their futures. So we have a

potentially inconsistent infinite regress of stipulations of what "optimal" actions entails.

31



this at least,conventionalRL considersa casethat hasmoregeneralitythan that of
the COIN frameworkpresentedhere. (It obviouslyhaslessgeneralityin that its world
utility is restrictedto bea discountedsum.)In fact though,tile apparenttime-indexing
of conventionalRL is illusory,and the time-dependentdiscountedsumworld utilty of
conventionalRL is actuallya specialcaseof the non-time-indexedworld utility of the
COIN framework.To seethis formally,considerany (time-independent)world utility

G(__) that equals _t_o 7tr(__,t) for some function r(.) and some positive constant "7 with
H

magnitude less than 1. Then for any t' > 0 and any __' and __" where _Z,t<t, = _-,t<t"

sgn[G(_Z) - G((_")] = sgn[E_=o'Ttr(_Zt) - E_=o 7tr(_'___',t)]• Conventional RL merely ex-

presses this in terms of time-dependent utilities ut, (_-,t>t') - Et_=t' "/t-t'r(_-,t) by writing

sgn[G(__') - G(_")] = sgn[ut, (__') - ut, (_")] for all t'. Since utility functions are, by deft-

nition, only unique up to the relative orderings they impose on potential values of their

arguments, we see that conventional RL's use of a time-dependent discounted sum world

utility ut, is identical to use of a particular time-independent world utility in the COIN

framework.

10)As mentioned above, there may be variables in each node's state which, under

one particular interpretation, represent the "utility fimctions" that the associated nil-

crolearner's computer program is trying to extremize. When there are such components

of _, we refer to the utilities they represent ms private utilities. However even when

there are private utilities, formally we allow the personal utilities to differ from thein.

The personal utility fimctions {g,j} do not exist "inside the COIN"; they are not specified

by components of _. This sct)arating of the private utilities from the {g,t} will allow us

to avoid the teleological problem that one may not always be able to explicitly identify

"the" private utility function reflected in _ such that a particular computational device

can be said to be a microlearner "trying to increase the value of its private utility". To

the degree that we can couch the theorems purely in terms of personal rather than pri-

vate utilities, we will have successfully adopted a purely behaviorist approach, without

any need to interpret what a computational device is "trying to do".

Despite this formal distinction though, often we will implicitly have in mind deploying

the personal utilities onto the microlearners as their private utilities, in which case the

terms can usually be used interchangeably. The context should make it clear when this

is the case.

4.2.2 Intelligence

We will need a measure of the performance of an arbitrary worldline __for an arbitrary

utility function under arbitrary dynamic laws C. Such a measure is a mapping from

three arguments to R. Having such a measure will allow us to quantify how well the

entire system performs in terms of G. It will also allow us to quantify how well each

microlearner performs in purely behavioral terms, in terms of its personal utility. (In

our behaviorist approach, we do not try to make specious distinctions between whether
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a microlearer performs well due to its "innate sophistication", or rather "by sheer luck"

-- all that matters is how effective its behavior is.) This behaviorism in turn will allow

us to avoid having private utilities explicitly arise in our theorems (although they still

arise frequently in pedagogical discussion). Even when private utilities exist, there will

be no formal need to explicitly identify some components of __as such utilities. Assuming

a node's microlearner is competent, the fact that it is trying to optimize some particular

private utility U will be manifested in our performance measure's having a large value

at (_ for C for that utility U.

The problem of how to formally define such a performance measure is essentially

equivalent to the problem of how to quantify bounded rationality in game theory. Some

of the relevant work in game theory is concerned with refinements of equilibria, and

adopts a strongly teleological perspective on rationality [?]). In general, such work is

only narrowly applicable, to those situations where the rationality is bounded due to the

precise causal mechanisnls investigated in that work. Most of the other game-theoretic

work first models (!) the microlearner, as some extremely simply computational device

(e.g., a deterministic finite automaton (DFA)). One then assumes that the microlearner

performs perfectly for that device, so that one can measure that learner's performance

in terms of some computational capacity measure of the model (e.g., for a DFA, the

mmlber of states of that DFA) [89, 178 203]. ttowever if taken ms renditions of real-

world computer-based microlearners (never mind human microlearners!), the models in

this approach are often extremely abstracted, with many important characteristics of the

real learners absent or distorted. In addition, there is little reason to believe that any

results arising from this approach would not be highly dependent on the model choice and

on the associated representation of computational capacity. Yet another disadvantage is

that this approach concentrates on perfect, fully rational behavior of the microlearners.

We would prefer a less model-dependent approach, one based solely on the utility

function at hand, __, and C. Now we don't want our performance measure to be a

"raw" utility value like g71(__), since that is not invariant with respect to monotonic

transformations of g_. Similarly, we don't want to penalize the microlearner for not

achieving a certain utility value if that value was impossible to achieve due to C and

tim actions of other nodes. A natural way to address these concerns is to generalize

the game-theoretic concept of "best-response strategy" and consider the problem of how

well _ performs given the actions of the other nodes. Such a measure would compare the

possible states of r/at some particular time, which without loss of generality we can take

to be 0 to the actual state _-m0" In other words, we would compare the utility of the

actual worldline __ to those of a set of alternative worldlines __', where _,7,0 = (-_j,0' and

use those comparisons to quantify the quality of _'s performance.

Now we're only concerned with comparing the effects of replacing (_ with (__on future

contributions to the utility. But if we allow arbitrary (--,t<0' then in and of themselves

the difference between those past components of _ and those of __can modify the value

of the utility, regardless of the effects of any difference in the future components. Our
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presumption is that for all COINs of interest we can avoid this conundrum by restricting

attention to those _' where _-',t<0 differs from (-,t<0 only in the internal parameters of

_/'s microlearner, differences that only at times t _> 0 manifest themselves in a form the

utility is concerned with. (In game-theoretic terms, such "internal parameters" encode

full extensive form strategies, and we only consider changes to the vertices at or below the

t = 0 level in the tree of an extensive-form strategy.) Under this presumption, without

violating C, we're able to pose the question, "if we change the state of r/ at time 0 in

such-and-such a way, leaving everything else of interest at that time unchanged, what

are the ramifications on the utility?"

However we don't want to restrict the computational algorithms that can run on

a node to those that have a clearly pre-specified set of "internal parameters" and the

like. So instead, we formalize our presumption behaviorally. Since changing the internal

parameters doesn't affect the t < 0 components of __,j, that the utility is concerned with,

and since we are only concerned with changes to __that affect the utility, we simply elect

to not change the t < 0 values of the internal parameters of __,j, at all. In other words,

we leave __,7,t<0unchanged which is something we can do just as easily whether 71does
or doesn't have any "internal parameters" in the first place.

So in quantifying the performance of 7/ for behavior given by __we compare (_ to a

set of __', a set restricted to those __' sharing (_'s past: ¢-',t<0 = _-,t<0' _,0 = _-;,,0' and

_-'t>o E C t>o. Since z' is free to vary (reflecting the possible changes _in the state, - _r/,0

of_ at time 0), _¢' _t C in general, and we may even wish to allow (-,t>0' _ C t>o,_ in

certain circumstances. (Re(_ll that C may reflect other restrictions impo_d on allowed

worldlines besides adherence to the underlying dynainical laws, so simply obeying those

laws does not force a worhtline to lie on C.) Howew'.r our presmnption is that as far

as utility values are concerned, considering such ¢_' is equivalent to considering a more

restricted set of (' with "modified internal parameters", all of which are E C.

We now present a formalization of this performance measure. Given C and a mea-

sure d#(__,0) demarcating what points in Z_, 0 we're interested in, we define the (t = 0)

intelligence for node 71of a point ¢ with respect to a utility U as follows:

e,,u(__ )- f d#(_:0) ®[V(_)- U(__,<0, C(__:0)) ] × 6(___,0- _-:,,,0) (1)

where O(.) is the Heaviside theta function which equals 0 if its argmnent is below 0 and

equals 1 otherwise, 5(.) is the Dirac delta fimction, and we assume that f d#(_Z,,o) = 1.

Intuitively, eu,u(__) measures the fraction of alternative states of 71which, if _1 had

been in those states at time 0, would either degrade or not improve _'s performance (as

measured by U). As an example, conventional full rationality game theory involving

Nash equilibria is exclusively concerned with scenarios in which all such fractions equal

1.0 More generally, competent greedy pursuit of private utility U by the microlearner

9As an alternative to such fully rational games, one can define a bounded rational game as one in

which the intelligences equal some vector _'whose components need not all equal 1. Many of the theorems
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controlling node r/ means that the intelligence of rI for personal utility U, %,u(__), is

close to 1. Accordingly, we will often refer interchangeably to a capable microlearner's

"pursuing private utility U", and to its having high intelligence for personal utility U.

Alternatively, if the microlearner for node r/ is incompetent, then it may even be that

"by luck" its intelligence for some personal utility {g0} exceeds its intelligence for the

different private utility that it's actually trying to maximize, U 0.

Any two utility functions that are related by a monotonically increasing transforma-

tion reflect the same preference ordering over the possible arguments of those functions.

Since it is only that ordering that we are are ever concerned with, we would like to remove

this degeneracy by "normalizing" all utility functions. To see what this means in the

COIN context, fix _-:n," Viewed as a function from Zo, -+ T_, _0,u(__-_,,-) is itself a utility

function. It says how well r/would have performed for all points -_v," Accordingly, the

integral transform taking U to %,u(__-_,, .) is a (contractive, non-invertible) mapping from

utilities to utilities. It can be proven that any mapping from utilities to utilities that

meets certain simple desiderata must be such an integral transform. (An example of such

a desideratum is that the mapping has the same output utility for any two input utilities

that are monotonically increasing transforms of one another.) In this, intelligence is the

unique way of "nornmlizing" Von Neulnann utility functions.

For those conversant with game theory, it is worth noting some of the interesting

aspects that ensue from this normalizing nature of intelligences. At any point _ that is a

Nash equilibrium in tile persona.1 utilities {go }, all intelligences {%,90 (__)} must equal 1.

Since that is the maximal vahle any intelligence can take on, a Nash equilibrium in the

{gv } is a Pareto optimal point in the associated intelligences (for the simple reason that

no deviation from such a _ can raise any of the intelligences). Now restrict attention to

systems with only a single instant of tilne (i.e., single-stage ganles), and have each of the

(real-valued) components of each _-v be a mixing componeut of an associated one of _'s

potential strategies for some underlying game, with g0(__) being the associated expected

payoff to _l. (So the payoff to 7! of the underlying pure strategies is given by the values

of g0(__) when __ is a unit vector in the space Z v of rl's possible states.) Then we know

that there must exist at least one Nash equilibrium in the {go}" In turn, whenever we

are assured of a Nash equilibrium in the {g,_}, the set of such equilibria is identical to

the set of points that are Pareto optimal in the associated intelligences. (See Eq. 5 in

the discussion of factored systems below.)

of conventional game theory can be directly carried over to apply to such bounded-rational games [251]

by redefining the utility functions of the players. I.e., much of conventional flfll rationality game theory

applies even to gaines with bounded rationality, under the appropriate transformation. This potentially

has major implications for the common criticism of modern economic theory that its full rationality

assumption does not hold in the real world.
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4.2.3 Learnability

Intelligence Call be a difficult quantity to work with, unfortunately. As an example, fix

z/, and consider any (small region centered about some) (_ that is not a local maximum of

some utility U. Then by increasing the values of U evaluated in that small region we will

increase the intelligence %,v (__). However in doing this we will also necessarily decrease

the intelligence at points outside that region. So intelligence has a non-local character, a

character that prevents us from directly modifying it to ensure that it is simultaneously

high for ally and all _.

A second, more general problem is that without specifying the details of a mi-

crolearner, it can be extremely difficult to predict which of two private utilities the

microlearner will be better able to learn. (Indeed, even with the details, making that

prediction Call be nearly impossible.) So it can be extremely difficult to determine what

private utility intelligence values will accrue to various choices of those private utilities.

In other words, macrolearning that involves lnodifying the private utilities to try to

increase directly intelligence with respect to those utilities call be quite difficult.

Fortunately we can circumvent lnany of these difficulties by using a proxy for (private

utility) intelligence. Although we expect its vahle usually to be correlated with that of

intelligence in practice, this proxy does not share intelligence's non-local nature. In ad-

ditiou, the proxy does not depend heavily on the details of the microlearning algorithms

used, i.e., it is fairly independent of those aspects of C.

We motivate this proxy by considering having g,_ = G for all 7/. If we try to actually

use these {g,1} asthe lnicrolearners' private utilities, particularly if the COIN is large, we

will invariably encounter a very bad signal-to-noise problenl. For this choice of utilities,

the effects of the actions taken by node q on its utility may be "swamped" and effectively

invisible, since there are so many other processes going into determining G's value. In

such a scenario, there is nothing that t]'s microlearner can do to reliably achieve high

intelligence, t0

One natural way to quantify this effect is as (utility) learnability: Given a measure

d#(_'o ) and manifold C, the utility learnability of a utility U for a node ,1 at _ is:

f - U( )I
- f ) _ u( )l " (2)

(Intelligence learnability is defined the same way, with U(.) replaced by %,u (.).) Note

that scaling all utility values by the same overall factor does not affect the value of the

learnability.

The integrand in the numerator of the definition of learnability reflects how much

of the change in U that results from replacing _(,0 with -,0_ is due to the change in rfs

1°This "signal-to-noise" problem is actually endemic to reinforcement learning as a whole, even some-

times occurring when one has just a single reinforcement learner, and only a few random variables jointly

determining the value of the rewards [254].
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t = 0 state (the "signal"). The denominator reflects how much of the change in U that

results from replacing __with ___ is due to the change in the t = 0 states of nodes other

than _7 (the "noise"). So learnability quantifies how easy it is for the microlearner to

discern the "echo" of its behavior in the utility function U. Our I)resumption is that the

microlearning algorithm will achieve higher intelligence if provided with a more learnable

private utility.

Note that a particular value of utility learnability, by itself, has no significance. Simply

rescaling the units of _-,1,0 will change that value. Rather what is important is the ratio

of differential learnabilities, at the same _, for different U's. Such a ratio quantifies the

relative preferability of those U's.

More generally, learnability is not meant to capture all factors that will affect how

high an intelligence value a particular microlearner will achieve. This is not possible if

for no other reason then the fact that there are many such factors that are idiosyncratic

to the microlearner used. In addition though, certain more general factors affecting

learning, like the curse of dimensionality, are not explicitly designed into learnability.

Learnability is not meant to quantify performance -- that is what intelligence is designed

to do. Rather (relative) learnability is meant to provide a guide for how to improve

performance.

The (utility) differential learnability at a point __ is the learnability with d# re-

stricted to an infinitesimal ball about __. We formalize it as the following ratio of mag-

nitudes of gradients:

I[O_-"'°U(_'t<°' C(_'°))[I (3)

- ii0_c0u( _t<0 ' c( _0))ll

One nice feature of differential learnability is that unlike learnability, it does not

depend on choice of some measure dlt(.). This independence can .lead to troubles if

one is not careful however, and in particular if one uses learnability for purposes than

choosing between utility functions. For example, in some situations, the COIN designer

will have the option of enlarging the set of variables from the rest of the COIN that are

"input" to some node _7and that therefore can be used by _/to decide what action to take.

Intuitively, doing so will not affect the RL "signal" for r/'s microlearner (the magnitude

of the potential "echo" of q's actions are not modified by changing some aspect of how

it chooses among those actions). However it will reduce the "noise". In the full integral

version of learnability, this effect can be captured by shrinking the support of d#(.) to

reflect the fact that the extra inputs to _/ at t = 0 are correlated with the t = 0 state

of the external system. In differential learnability however this is not possible, precisely

because no measure d#(.) occurs in differential learnability. So we must capture the

reduction in noise in some other fashion. 11

HAn example of how to do so is to replace 0_%,0U(_,t< 0, C(__,0)) in the definition of differential learn-

ability with the projection of 0_¢ ,oU(__t< 0, C(__0)) onto the tangent plane of C,t>_o at __. Assume that
in addition to the restriction of obeying the dynamic laws C(.) for evolution to times past t = 0, the
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A system that has infinite (differential, intelligence) learnability is said to be "per-

fectly" (differential, intelligence) learnable. It is straight-forward to prove that a system

is perfectly learnable V_ E C iff Vr1, g,((_) can be written as ¢,_(__,1,0) for some function

¢_(.). (See the discussion below on the general condition for a system's being perfectly

factored.)

4.3 A descriptive framework for COINs

With these definitions in hand, we can now present (a portion of) one descriptive frame-

work for COINs. In this subsection, after discussing salient characteristics ill general,

we present some theorems concerning the relationship between personal utilities and the

salient characteristic we choose to concentrate on. We then discus how to use those

theorems to induce that salient characteristic.

4.3.1 Candidate salient characteristics of a COIN

The starting point with a descriptive framework is tile identification of "salient charac-

teristics of a COIN which one strongly expects to be associated with its having large

world utility". In this chapter we will focus on salient characteristics that concern the re-

lationship between personal and world utilities. These characteristics are formalizations

of the intuition that we want COINs in which l,he competent greedy pursuit of their pri-

vate utilities by the microlearners results in large world utility, without any bottlenecks,

TOC, "frustration" (in the spin glass sense) or the like.

One natural candidate for such a characteristic, related to Pareto optimality [90, 89],

is weak triviality. It is defined by considering any two worldlines __ and __' both of

which are consistent with the system's dynamics (i.e., both of which lie on C), where for

every node 71,g_(__) _>g_(__'). (An obvious variant is to restrict _-',t<0 = _-,t<0' and require

only that both of the "partial vectors" £-',t>0 and _-,t>0 obey the relevant dynamical laws,

and therefore lie in C,t>o.) If for any such pair of worldlines it is necessarily true that

G(__) ___G(_'), we say that the system is weakly trivial. We might expect that systems

that are weakly trivial for the microlearners' private utilities are configured correctly for

inducing large world utility. After all, for such systems, if the microlearners collectively

change ( in a way that ends up helping all of them, then necessarily the world utility

also rises.

As it turns out though, weakly trivial systems can readily evolve to a world utility

minimum, one that often involves TOC. To see this, consider automobile traffic in the

absence of any traffic control system. Let each node be a different driver, and say their

private utilities are how quickly they each individually get to their destination. Identify

manifold C,t>o reflects the restriction on _,t>_othat the extra inputs to rI at t = 0 are correlated with
the t = 0 state of the external system. Under these circumstances, this projection of the gradient of the

)} components will reduce the noise term in the appropriate fashion. See [250].
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worldutility asthesumof privateutilities. Thenby simpleadditivity, for all _ and __',
whetherthey lie on C or not, if g,_(__) _> gn(__') Vr_ it follows that G(__) >_ G(__'); the

system is weakly trivial. However as any driver on a rush-hour fi'eeway with no carpool

lanes or metering lights can attest, every driver's pursuing their own goal definitely does

not result ill acceptable throughput for the system as a whole; modifications to private

utility functions (like fines for violating carpool lanes or metering lights) would result

in far better global behavior. A system's being weakly trivial provides no assurances

regarding world utility.

The problem with weak triviality is precisely the fact that the individual microlearners

are greedy. In a COIN, there is no system-wide incentive to replace _ with a different

worldline that would improve everybody's private utility, as ill the definition of weak

triviality. Rather the incentives apply to each microlearner individually and motivate

the learners to behave in a way that may well hurt some of them. So weak triviality is,

upon examination, a poor choice for the salient characteristic of a COIN.

One alternative to weak triviality follows from considering that we must 'expect'

a salient characteristic to be coupled to large world utility, of the definition of the

descriptive fl'amework. What can we reasonably assume about a running COIN? We

cannot assume that all the private utilities will have large values ..... witness the traffic

example. But we caT_ ,assume that if the microlearners are well-designed, each of them

will be doing close to as well it can given the behavior of thr: other nodes. In other words,

within broad limits we can assmne that the system is more !ikcly to be in _ than __' if for

all q, %._,.(_ >_ %,g,(_'). We define a system to be coordinated iff for any such __and
/4

_' lying oa_ (7, G(__) >_ a(_'). (Again, an obvious variant is to restrict _,t<o = _-,t<0' and

_-,t>_olie in C,t:2o.) Traffic systems are not coordinated,require 0nly that both _-,t_>_0and '

in general. This is evident from the simple fact that if all (hivers acted as though there

were metering lights when in fact there weren't ally, they would each be behaving with

lower intelligence given the actions of the other drivers (each driver would benefit greatly

by changing its behavior by no longer pretending there were metering lights, etc.). But

nonetheless, world utility would be higher.

4.3.2 The Salient Characteristic of Factoredness

Like weak triviality, coordination is intimately related to the economics concept of Pareto

optimality. Unfortunately, there is not room in this chapter to present the mathematics

associated with coordination and its variants. However there is room to discuss a third

candidate salient characteristic of COINs, one which like coordination (and unlike weak

triviality) we can reasonably expect to be associated with large world utility. This

alternative fixes weak triviality not by replacing the personal utilities {g,j} with the

intelligences {%,9, } as coordination does, but rather by only considering worldlines whose

difference at time 0 involves a single node. This results in its being related to Nash

equilibria rather than Pareto optimality.
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Saythat ourCOIN'sworldlineis__.Let__'beanyotherworldlinewhere_-,t<o= _-',t<o'
andwhere '_,t>o E C,t>o. Now restrict attention to those __' where at t = 0 __and _' differ

only for node _. If for all such _'

sgn[g,((_) - g',((-,t<o' C(_',0))] = sgn[G(_) - G(__,t<0, C(__'0))], (4)

and if this is true for all nodes 7/, then we say that the COIN is factored for all those

utilities {g_} (at __,with respect to time 0).

For a factored system, for any node r/, given the rest o/the system, if the node's state

at t = 0 changes in a way that improves that node's utility over the rest of time, then

it necessarily also improves world utility. Colloquially, for a system that is factored for

a particular microlearner's private utility, if that learner does something that improves

that personal utility, then everything else being equal, it has also done sonmthing that

improves world utility. Of two potential microlearners for contro!ling node 71(i.e., two

potential ___) whose behavior until t = 0 is identical but which disagree there, the mi-
crolearner that is smarter with respect to g will always result in a larger g, by definition

of intelligence. Accordingly, for a factored system, the smarter microlearner is also the

one that results in better G. So as long as we have deployed a sufficiently smart mi-

crolearner on _/, we have assured a good G (given the rest of the system). Formally, this

is expressed in the fact [250J that for a factored system, for all nodes 71,

= •

One can also prove that Nash equilibria of a factored system are local maxima of world

utility. Note that in keeping with our behaviorist perspective, nothing in the definition

of factored requires private utilities. Indeed, it may well be that a system having private

utilities {U,_} is factored, but for personal utilities {g,_} that differ from the {U,_}.

A system's being factored does not mean that a change to _,0 that improves g,l((__)

cannot also hurt gr/(__) for some rf # _7- Intuitively, for a factored system, the side

effects on the rest of the system of rl's increasing its own utility donor end up decreasing

world utility -- but can have arbitrarily adverse effects on other private utilities. For

factored systems, the separate microlearners successfully pursuing their separate goals

do not frustrate each other as far as world utility is concerned.

In general, we can't have both perfect learnability and perfect factoredness. As an

example, say that Vt, Z_, t = Z_, t = g. Then if G(C(__o) ) = _-,j,0 × (_,0 and the system

is perfectly learnable, it is not perfectly factored. This is because (-7,0 = G((:-)/_-_,o for

this case, and therefore perfect learnability requires that V(_ E C, g_(__) = _b,l(G(__)/(_:,j,o)

for some function _b_(.). However the partial derivative of this with respect to G will be

negative for negative _-;j,0' which means the system is actually "anti-factored" for such

_,0" Due to such incompatibility between perfect factoredness and perfect learnability,
we must usually be content with having high degree of factoredness and high learnability.

In such situations, the emphasis of the macrolearning process should be more and more
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on havinghighdegreeof factorednessasweget closerandcloserto a Nashequilibrium.
This way thesystemwon't relaxto an incorrectlocalmaximum.

In practiceof course,a COIN will often not be perfectlyfactored. Nor in practice
arewealwaysinterestedonly in whetherthe systemis factoredat oneparticularpoint
(ratherthanacrossaregionsay).Theseissuesarediscussedin [250],wherein particular
a formaldefinitionof of tile degreeof faetorednessof a systemis presented.

If a systemis factoredfor utilities {g,1},then it is alsofactoredfor anyutilities {g',j}
' is a monotonically increasing function of gn. More generally, tilewhere for each _7gv

following result characterizes the set of all factored personal utilities:

Theorem 1: A system is factored at all ( C C iff for all those (, gTl, we can write

= (6)

for some function On(.,., .) such that 0cq_n(__,_,t<o , G) > 0 for all __E C and associated

G values. (The form of the {gv} off of C is arbitrary.)

Proof." For fixed _v,o and _,t<o' any change to _-_,0 which keeps _-,t_>oon C and which at

the same time increases G((_) = G(__t< o, C(___j,o, _,,o)) must increase q%(_-,t<o' _;i,o' G((_)),

clue to the restriction on 0cO,_(_,t< 0, _,_,0' G). This establishes tile backwards direction

of the proof.

For the forward direction, write gv(_) = g,l(_, G((_)) = g'_(-Qt<o' C(_v,o' _-v,o)' G((_)) V __E

C. Define this formulation of g,j `as q,,/(__t<o,_o,G(_)), which we can re-express ,as

_((t<o,¢_,0,__,1,o, G(__)). Now since the system is factored, V__E C, V__'t_>o C C,t>o,

• =

¢:::=>

--, --, C tG(¢t<0, c(g,,o,Q0))) = (Qo,¢',,o)) •

So consider any situation where the system is factored, and both the values of G and

of _;_,o are specified. Then we can find any _-,_,oconsistent with those values (i.e., such

that our provided value of G equals G(__,t<o, C(___,o, _-v,o)))' evaluate the resulting value

of Ov(__,t<0, _'_,o' _-v,o' G), and know that we would have gotten the same value if we had

found a different consistent _v,o" This is true for all _ _ C. Therefore the mapping

(__,t<0, _. ,0, G) --+ q_,_ is single-valued, and we can write _'_((-,t<0' _-;_,0' G(__)). QED.

By Thm. 1, we can ensure that the system is factored without any concern for

C, by having each g,,(__) = O,,(__t<o,_;o,G(__)) V__ _ Z. Alternatively, by only re-

quiring that V__ _ C does g_(_) = O,_(__,t<0,___,0,G(__)) (i.e., does gv(_t<o,C(__o)) =

Ov(__,t<0,(--',_,0,G(_-,t<0'C(_,0))))' we can access a broader class of factored utilities, a
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classthat does depend on C. Loosely speaking, for those utilities, we only need tile

projection of 0_t>0G(__) onto Cu,0 to be parallel to the projection of c0/_,>0g,(__) onto

Cn,0. Given G a,i-d C, there are infinitely many Oi,,>o9,J(__) having this projection (the

set of such O__t>og,7(__)form a linear subspace of Z). The partial differential equations
expressing the precise relationship are discussed in [250].

As an example of the foregoing, consider a "team game" (also known as an "exact

potential game" [76, 169]) in which g, = G for all 71. Such COINs are factored, trivially,

regardless of C; if g_ rises, then G must as well, by definition. (Alternatively, to confirm

that team games are factored just take (I),7(_,t<0, _-'_,0'G) = G Vr/in Thin. 1.) Oil the

other hand, as discussed below, COINs with 'wonderful life' personal utilities are also

factored, but the definition of such utilities depends on C.

4.3.3 Wonderful life utility

Due to their often having poor learnability and requiring centralized communication

(among other infelicities), in practice team game utilities often are poor choices for

personal utilities. Accordingly, it is often preferable to use some other set of factored

utilities. To present an important example, first define the (t = 0) effect set of node r1

at (_, C_II(__.), as the set, of all components -_-./,t for which O_,_,o(C((_.o)).,,t 7_ (5. Define the

effect set C_//witl- 11(1 specification of _ as Oc,ecC,_fI(__). (We take this latter definition

to be the default meaning of "effect set".) Intuitively, r/'s effect set is the set of all

components _,l',t which would be affected by a change in the state of node 7/at time 0.

(They may or may not bo. affected by changes in the t = 0 slates of the other nodes.)

The extension for times oth('r than 0 is immediate, as is the extension to effect sets that

consist of sut)sets of the set of all components _-v,t;i rather than ot" the set of vectors _-,_,t"

These extensions will be skipped here though to minimize the number of variables we

must keep track of.

Next take the Wonderful Life set a to be a set of components (r/, t), and define

CL_(_) as the vector __modified by clamping the a-components of__ to an arbitrary fixed

value, here taken to be (_ for all such components. Then the the value of the wonderful

life utility (WLU for short) for a at _ is:

WLU(,(__) =- a(__) - G(CL_((_)). (7)

In particular, the WLU for the effect set of node rj is G(_) - G(CLc_/f(_)), which for

__E C can be written as G(__t< 0, C(__ 0) ) - G(CLc,_//(_-,t<0' C(_-,0)))"

We can view r/'s effect set WLU as analogous to the change in world utility that would

have arisen if node 77"had never existed". (Hence the name of this utility - el. the Prank

Capra movie.) Note however, that CL is a purely "fictional", counter-factual operation,

in the sense that it produces a new _ without taking into account the system's dynamics.

Indeed, no assumption is even being made that CLo(__) is consistent with the dynamics
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of tile system.The sequenceof statestile node71is clampedto in tlle definitionof the
WLU neednot beconsistentwith the dynamicallawsof the system.

This dynamics-independenceis a crucial strengthof the WLU. It meansthat to
evaluatetheWLU wedo not try to infer how the system would have evolved if node q's

state were set to 0 at time 0 and the system evolved from there. So long as we know __

extending over all time, and so long as we know G, we know the value of WLU. This is

true even if we know nothing of the dynamics of the system.

An important example is effect set wonderful life utilities when the set of all nodes

is partitioned into 'subworld' in such a way that all nodes in the same subworld to share

substantially the same effect set. In such a situation, all nodes in the same subworld ca

will have essentially the same personal utilities, exactly a_s they would if they used team

game utilities with a "world" given by ca. When all such nodes have large intelligence

values, this sharing of the personal utility will mean that all nodes in the same subworld

are acting in a coordinated fashion, loosely speaking.

The importance of the WLU arises from the following results:

Theorem 2: A COIN is factored for personal utilities set equal to the associated effect

set wonderful life utilities.

Proof: Since CLc_//(() is independent of (-,/,t for all (q', t) E C_ f/, so is the Z vector

CLc_//((t<o,C((o) )._,_, I.e., OC,,o[CI, c_/](__,t<,o,C((o))],f,t_., -, = 6 Vr/,t. This means that
, __ C aviewed as a function from Co to Z,' CLc,_//(__t< 0, (.)) is single-valued function of(.._,0.

Therefore G(CLc_//(__,t< o, C(__,0))) can only depend on-_,t<0 and the non-_ 7 components

of _-,0' Accordingly, the WLU for C_//is just G minus a term that is a function of _-:t<.

and _t_,0" By choosing (Ibl(-,., .) in Thm. 1 to be that difference, we see that r/'s effect
set WLU is of the form necessary for the system to be factored. QED.

More generally, the system is factored if each node r/'s personal utility is (a monotonically

increasing function of) the WLU for a set cru that contains C_//.

For conciseness, except where explicity needed, we will suppress the argument "_-,t<0"

in the rest of this subsection, taking it to be implicit. To understand the potential

practical advantages of the WLU, we start with the following:

Theorem 3: Let c_ be a set contaiing C_ ff. Then

),,,wLgo(() _ I

,x,,a((_) - O(_.,oG(CLo(C((_,o)))II "
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Proof." Writing it out,

IlO_,,oa( C(__,o) ) - O__,,oa(CLo(C(__ o) ) )l I

A,,WLL  ----I10 ._,oG(C(_-,o)) - 0_,_.,0G(CLa (C(__,0)))ll "

The second term ill the numerator equals 0, by definition of effect set. Dividing by the

similar expression for A,_,G(£__)then gives the result claimed. QED.

So if we expect that ratio of magnitudes of gradients to be large, effect set WLU has

nmch higher learnability than team game utility -- while still being factored, like team

game utility. As an example, consider the case where the COIN is a very large system,

with 71being only a relatively minor part of the system (e.g., a large human economy

with 7/being a "typical John Doe"). Often in such a system, for the vast majority of

nodes r/ ¢ r], how G varies with _-,l', will be essentially independent of the value _-,,0"

(E.g., how GDP of the US economy varies with the actions of John Doe' in Peoria, Illinois

will be independent of the state of some Jane Snfith in Los Angeles, California.) In such

circumstances, Thm. 3 tells us that the effect set wonderflfl life utility for r/will have a

far larger learnability than does the world utility.

For any fixed or, if we change the clamping operation (i.e., change the choice of the

"arbitrary fixed value" we clamp each component to), then we change the lnal)ping

_ _ "(,0 -+ CL_(C((",0))' and therefore change the mapping (( _" --+ G(CL,,(C(__,o)))

Accordingly, changing the clamping operation can affect the value of 0 i G(CLo(C(_ ,,))
-'_,0 --,u

evahmted at some point _,0" Therefore, by Thin. 3, changing the clamping operation

can affect ATi,WLU_(__). So properly speaking, for any choice of a, if we're going to

use WLU,,, we should set the clamping operation so as to maximize learnability. For

simplicity though, in this paper we will ignore this phenomenon, and simply set the

clalnping operation to a more or less "natural" choice.

Next consider the case where, for some node r/, we can write G(__,) as GI(__c;//) +

G2(__,t<0,__.c;//). Say it is also true that rfs effect set is a small fraction of the set of
all components. In this case it often true that the values of G(.) are much larger than

those of G1 (.), which means that partial derivatives of G(.) are much larger than those of

GI(.). In such situations the effect set WLU is far more learnable than the world utility,

due to the following results:

Theorem 4: If for some node r/there is a set a containing CJ I, a function al(_ E Z___),

and a function G2(___ E Z_), such that G(_) = GI(___) + G2(___), then

) ,,WLUo(C)

X_,a(_) IIO__;,,oG(CL_(C(__,o)))II "

Proofi For brevity, write G1 and G2 both as flmctions of full _ G Z, just such func-

tions that are only allowed to depend on the components of _ that lie in a and those
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components that do not lie in a, respectively. Then the a WLU for node _1 is just

g_(_) = GI(__) - GI(CLa(_()). Since in that second term we're clamping all the compo-

nents of __ that el (.) cares about, for this personal utility c3__og,7(C(__ 0) ) = 0_ ° G1 (C(__,0)).

So in particular 0¢_. og,1(C(__,o) ) = O___,oGl(C(__,o)) = O___,oG(CL_(C(_,o))). Now by

definition of effect set, O__,.oG2(__,t<o,C(__o) ) = 0, since _ does not contain C,_ fl. So

0_,_,oG(C(__,o)) = 04,_,0G1 (C(__,0) ) = 0¢._,0g'l( C(¢-, 0)) QED.

The obvious extensions of Thm.'s 3 and 4 for when we're considering effect sets with

respect to times other than 0 holds.

An important special case of Thm. 4 is the following:

Corollary 1: If for some node r/we can write

i) G(__) = al(_) + G2([_.a]t_>o) -4- a3(__,t< o)

for some set a containing C_ M, and if

ii) I]Og,_.,oG(C(C_,o))11>>1104;_,oG1 ([C(__, o)]a)ll,

then

>

In practice, to assure that condition (i) of this corollary is met might require that a

be a proper superset of C_ II Countervailingly, to assure that condition (ii) is met will

usuaUy force us to keep a as small as t)ossiblc.

4.3.4 Inducing our salient characteristic

Usually in a descriptive franmwork our mathematics a formal investigation of the

salient characteristics -- will not provide theorems of the sort, "If you modify the COIN

the following way at time t, the the value of the world utility will increase." Rather it

provides theorems that relate a COIN's salient characteristics with the general properties

of the COIN's entire history, and in particular with those properties embodied in C.

In particular, the salient characteristic that we are concerned with in this chapter is

that the system be highly intelligent for personal utilities for which it is factored, and

our mathenmtics concerns the relationship between factoredness, intelligence, personal

utilities, effect sets, and the like.

More formally, the desideratum associated with our salient characteristic is that we

want the COIN to be at a _ for which there is somc set of {g,_ } (not necessarily consisting

of private utilities) such that (a) (_ is factored for the {g,j}, and (b) e,_,g, (_) is large for

all q. Now there are several ways one might try to induce the COIN to be at such a

point. One approach is to have each algorithm controlling 7/explicitly try to "steer" the

worldline towards such a point. In this approach rl needn't even have a private utility in
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theusualsense.(Tile overt"goal"of the algorithm controlling _/involves finding a __with

a good associated extremum over the class of all possible g,, independent of any private

utilities.) Now initialization of the COIN, i.e., fixing of __, involves setting the algorithm

controlling _/, in this case to the steering algorithin. Accordingly, in this approach in

initialization we fix( to a point for which there is some special g_ such that both __ is

factored for g_, and %,g, (__) is large. There is nothing peculiar about this. What is odd

though is that in this approach we do not know what that "special" g_ is when we do

that initialization; it's to be determined, by the unfolding of the system.

In this chapter we concentrate on a different approach, which can involve either ini-

tialization or macrolearning. In this alternative we deploy the {g_} as the microlearners'

private utilities at some t < 0, in a process not captured in C, so as to induce a factored

COIN that is as intelligent as possible. (It is with that "deploying of the {g,}" that we

are trying to induce our salient characteristic in the COIN.) Since in this approach we

are using private utilities, we can replace intelligence with its surrogate, learnability. So

our task is to choose {g,} which are as learnable as possible while still being factored.

Solving for such utilities can be expressed as solving a set of coupled partial differential

equations. Those equations involve the tangent plane to the manifold C, a fimctional

trading off (the differemial versions of)degree of factoredness and learnability, and any

communication constraints on the nodes we must respect. While there is not space u the

current chapter to present those eqmttions, we can note that they are highly del)endent on

the correlations among the components of_v,t. So in this approach, in COIN initialization

we use some preliminary guesses as to those correlations to set the initial {g_j}. For

example, the effect set of a node constitutes all components _-,',t>0 that have non-zero

correlation with _-_,0" Furthermore, by Thin. 2 the system is factored for effect set WLU

personal utilities. And by Coroll. 1, for small effect sets, the effect set WLU has much

greater differential utility learnability than does G. Extending the reasoning behind this

result to all __ (or at least all likely __), we see that for this scenario, the descriptive

framework advises us to use Wonderful Life private utilities based on (guesses for) the

associated effect sets rather than the team game private utilities, g_l = G V_?.

In macrolearning we must instead run-time estimate an approximate solution to our

partial differential equations, based on statistical inference. 12 As an example, we might

start with an initial guess as to r/'s effect set, and set its private utility to the associated

WLU. But then as we watch the system run and observe the correlations among the

components of _, we might modify which components we think comprise _fs effect set,

and modify _/'s personal utility accordingly.

12Recall that in the physical world, it is often useful to employ devices using algorithms that are

based on probabilistic concepts, even though the underlying system is ultimately deterministic. (Indeed,

theological Bayesians invoke a "degree of belief" interpretation of probability to demand such an approach

-- see [?] for a discussion of the legitimacy of this viewpoint.) Similarly, although we take the underlying

system in a COIN to be deterministic, it is often useful to use microlearners or -- as here -- macrolearners

that are based on probabilistic concepts.

46



4.4 Illustrative Simulations of our Descriptive Framework

As implied above, often one can perform reasonable COIN initialization and/or macrolearn-

ing without writing down the partial differential equations governing our salient char-

acteristic explicitly. Simply "hacking" one's way to tile goal of maximizing both degree

of factoredness and intelligibility, for example by estimating effect sets, often results in

dramatic improvement in performance. This is illustrated in the experiments recounted

in the next two subsections.

4.4.1 COIN Initialization

Even if we don't exactly know the effect set of each node _?, often we will be able to make

a reasonable guess about which components of __comprise the "preponderance" of _'s

effect set. We call such a set a guessed effect set. As an example, often the primary

effects of changes to _'s state will be on the future state of 7, with only relatively minor

effects on the future states of other nodes. In such situations, we would expect to still

get good results if we approximated the effect set WLU of each node _ with a WLU

based on tile guessed effect set _-rj,t>0" In other words, we would expect to be able to

replace WLUc_// with WLU__,.t_>o and still get good performance.

This phenomenon was borne out in the exl)eriments recounted in [255] that used

COIN initialization for distributed control of network pa(:ket routing. In a conventional

approach to packet routing, each router runs what it believes (based on tile inh)rmation

available to it) to be a shortest path algorithm (SPA), i.e., each router sends its packets in

the way that it surmises will get those packets to their destinations most quickly. Unlike

with a COIN, with SPA-based routing the touters have no concern for the possible

deleterious side-effects of their routing decisions on the global performance (e.g., they

have no concern for whether they induce t)ottlenecks). We ran sinmlations in which

we compared a COIN-based routing system to an SPA-based system. For the COIN-

based system G was global throughput and no macrolearning was used. The COIN

initialization was to have each router's private utility be a WLU based on an associated

guessed effect set generated a priori. In addition, the COIN-based system was realistic

in that each router's reinforcement algorithm had imperfect knowledge of the state of the

system. On the other hand, the SPA was an idealized "best-possible" system, in which

each router knew exactly what the shortest paths were at any given time. Despite the

handicap that this disparity imposed on the COIN, it achieved significantly better global

throughput in our experiments than did the perfect-knowledge SPA-based system.

The experiments in [255] were primarily concerned with the application of packet-

routing. To concentrate more precisely on the issue of COIN initialization, we ran

subsequent experiments on variants of Arthur's famous "El Farol bar problem" (see

Section 3). To facilitate the analysis we modified Arthur's original problem to be more

general, and since we were not interested in directly comparing our results to those in
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the literature,weuseda moreconventional(andarguably"duml)er")machinelearning
algorithmthan theonesinvestigatedin [4,45,49,61].

In this formulationof the barproblem[256],thereareN agents, each of whom picks

one of seven nights to attend a bar the following week, a process that is then repeated.

In each week, each agent's pick is determined by its predictions of the associated rewards

it would receive. These predictions in turn are based solely upon the rewards received

by the agent in preceding weeks. An agent's "pick" at week t (i.e., its node's state at

that week) is represented as a unary seven-dimensional vector. (See the discussion in the

definitions subsection of our representing discrete variables as Euclidean variables.) So

r/'s zeroing its state in some week, as in the CL__,, t operation essentially means it elects

not to attend any night that week.

The world utility is

a(¢_)= Z R(¢_,),
t

-, = _k=l 7k(xk(__,t)); Xk(_,t) is tile total attendance on night k at weekwhere: R(_ t) 7

t; 7k(Y) = akyexp(-y/c); and c and each of the {ak} are real-valued parameters.

Intuitively, the "world reward" R is the sum of the global "rewards" for each night in

each week. It reflects tile effects in the bar as the attendance profile of agents changes.

When there are too few agents attending some lfight, the bar suffers fi'om lack of activity

and therefore tile global reward for that night is low. Conversely, when there are too

many agents the bar is overcrowded and the reward for that night is again low. Note

that "/k(') reaches its ,naximum when its argument equals c.

In these experinmnts we investigatb_ two different (_'s. One treats all nights equally;

= [11111 11]. The other is only concerned with one night;ff = [0007000].

In our experiinents, c = 6 and N is chosen to be 4 times larger than the number of

agents necessary to have c agents attend the bar on each of the seveu nights, i.e., there

are 4 × 6 × 7 = 168 agents (this ensures that there are no trivial solutions and that for

the world utility to be maximized, the agents have to "cooperate").

As explicated below, our microlearning algorithms worked by providing a real-valued

"reward" signal to each agent at each week t. Each agent's reward function is a surrogate

for an associated utility function for that agent. The difference between the two functions

is that tile reward function only reflects the state of the system at one moment in time

(and therefore is potentially observable), whereas the utility function reflects the agent's

ultimate goal, and therefore can depend on the full history of that agent across time.

We investigated three agent reward functions. With du the night selected by _h they

are:

Uniform Division (UD):

Global (G):

Wonderful Life (WL):
k=l

r,(_-,t) - R(_-,t) - R(CL__,,t(_-,t))
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The conventional UD reward is a natural "naive" choice for tile agents' reward; the

total reward on each night gets uniformly divided among the agents attending that night.

If we take g,l((_) = _t r,l((_,t) (i.e., _'s utility is an undiscounted sum of its rewards), then

for the UD reward G((_) = _ gn((_), so that the system is weakly trivial. The original

version of the bar problem in the physics literature [49] is the special case where UD

reward is used but there are only two "nights" in the week (one of which corresponds to

"staying at home"); d is uniform; and "/k(xk) = O(N/2 - xk). So the reward to agent

r/is 1 if it attends the bar and attendance is below capacity, or if it stays at home and

the bar is over capacity. Reward is 0 otherwise. (In addition, unlike in our COIN-based

systems, in the original work on the bar problem the microlearners work by explicitly

predicting whether the bar attendance, rather than by directly modifying behavior to

try to increase a reward signal.)

In contrast to the UD reward, providing the G reward at time t to each agent results

in all agents receiving the same reward. For this reward function, the system is auto-

matically factored if we define g_(__) -- _t r,l(__,t). However, evaluation of this reward

function requires centralized communication concerning all seven nights. Furthermore,

given that there are 168 agents_ G is likely to have poor learnability as a reward for any

individual agent.

This latter problem is obviated by using the WL reward, where the subtraction of

tile clamped term removes some of the "noise" of the activity of all other agents_ leaving

only the underlying "signal" of how the agent in question affects tile utility. So one

would expect that with the WL reward the agents can readily discern the effects of their

actions on their rewards. Even though the conditions in Coroll. 1 don't hold 13, this

reasoning accords with the implicit advice of Coroll. 1 under the approximation of the

t = 0 effect set as CJ / _. _-,7,t>_o" I.e., it agrees with that corollary's implicit advice under

the identification of (-Tt,t>_0as _/'s t -- 0 guessed effect set.

In fact, in this very simple system, we can explicitly calculate the ratio of the WL

reward's learnability to that of the G reward, by recasting the system as existing for

only a single instant so that CJ f = (-T_,0exactly and then applying Thm. 3. So for

example, say that all _k = 1, and that tlle number of nodes N is evenly divided among

the seven nights. The numerator term in Thm. 3 is a vector whose components are

some of the partials of G evaluated when Xk(__,o) = N/7. This vector is 7(N - 1)

dimensional, one dimension for each of the 7 components of (the unary vector comprising)

each node in _. For any particular rf _ 71 and night i, the associated partial derivative

is _k[e-Xk(i--,°)/c(1 --xk(__,o)/C ) × 0i_, 0;_(xk(_,0))], where as usual "_-,',0;/' indicates the

i'th component of the unary vector _-_',0" Since 0__,,o;, (xk(_,0)) = 5i,k, for any fixed i and

lSThe t = 0 elements of C_// are just _-,.t=o' but the contributions of _,t=o to G cannot be written as

a sum of a _-,_.t=ocontribution and a _-_.t=o contribution.
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_', this sumjust equalse (-N/Tc) (1 - N/7c). Since there are 7(N - 1) such terms, after

taking the norm we obtain le (-g/Tc) [1 - g/7c] v/7(N - 1)1.

The denominator term in Thin. 3 is the difference between the gradients of the

global reward and the clamped reward. These differ oil only N - 1 terms, one term

for that coml)onent of each node 7/' # q corresponding to the night 7/ attends. (The

other 6N - 6 terms are identical in the two partials and therefore cancel.) This yields

le (-N/7c) [1 - N/7c] [1 - el�C(1 g-rcr )] x/_-- 1. Combining with the result of the

previous paragraph, our ratio is Iv_ N-7c(N_7c)(l_el/c)+Tel/c ['_ 11.

In addition to this learnability advantage of the WL reward, to evaluate its WL

reward each agent only needs to know the total attendance on the night it attended,

so no centralized communication is required. Finally, although the system won't be

perfectly factored for this reward (since in fact the effect set of _]'s action at t would be

expected to extend a bit beyond _-,j,t)' one might expect that it is close enough to being

factored to result in large world utility.

Each agent keeps a seven dimensional Euclidean vector representing its estimate of

the reward for attending each night of the week. At the end of each week, the component

of this vector corresponding to the night just attended is proportionally adjusted towards

the actual reward just received. At the beginning of the succeeding week, the agent picks

the night to attend using a Boltzmann distribution with energies given by the comI)onents

of the vector of estimated rewards, where the temI)erature in the Boltzlnann distribution

decays in time. (This learning algorithm is equivalent to Claus and Boutilier's [56]

independent learner algorithm for nmlti-agent reinforcement learning.) We used the

same parameters (learning ra_, Boltzmann temperature, decay rates, etc.) for all three

reward functions. (This is an extremely primitive RL algorithm which we only chose

for its pedagogical value; more sophisticated RL algorithms are crucial for eliciting high

intelligence levels when one is confronted with more complicated learning problems.)
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runs,for all threerewardfunctions,for both (_ = [1 11 11 11]andd = [000 70 00].
The behaviorwith the G rewardeventuallyconvergesto tile globaloptimum. This is
in agreementwith the resultsobtainedby Crites [57]for the bank of elevatorscontrol
problem.Systemsusingthe WL rewardalsoconvergedto optimal performance.This
indicatesthat for the bar problemour approximationsof effectssetsare sufficiently
accurate,i.e., that ignoringtile effectsoneagent'sactionswill haveon futureactionsof
otheragentsdoesnot significantlydiminishperformance.This reflectsthe fact that the
onlyinteractionsbetweenagentsoccursindirectly,via their affectingeachothers'reward
values.

HoweversincetheWL rewardis morelearnablethan than theG reward,convergence
with the WL rewardshouldbe far quicker than with the G reward. Indeed,when
c_ = [0 0 0 7 0 0 0], systemsusingthe G rewardconvergein 1250weeks,which is 5
timesworsethan thesystemsusingWL reward.Whenc_ = [1 1 1 1 1 1 1] systems take

6500 weeks to converge with the G reward, which is more than 30 times worse than the

time with the WL reward.

In contrast to the behavior for COIN theory-based reward functions, use of the con-

ventional UD reward results in very poor world reward values, values that deteriorated

as the learning progressed. This is an instance of the TOC. For example, for the case

where (7 = [0 0 0 7 0 0 0], it is in every agent's interest to attend the same night -- but

their:doing so shrinks the world reward "pie" that must be divided among all agents.

A similar TOC occurs when c7 is uniform. This is illustrated in fig. 2 which shows a

typical example of {xk(__,t) } for each of the three reward fimctions for t = 2000. In

this examI)le optimal performance (achieved with the WL reward) has 6 agents each on

6 separate nights, and the remaining 132 agents on one night.
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and UD (right).
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Figure 3 shows how t = 2000 performance scales with N for each of the reward signals

for c_ = [0 0 0 7 0 0 0]. Systems using the UD reward perform poorly regardless of N.

Systems using the G reward perform well when N is low. As N increases however, it

becomes increasingly difficult for the agents to extract the information they need from the

G reward. (This problem is significantly worse for uniform G.) Because of their superior

learnability, systems using the WL reward overcome this signal-to-noise problem (i.e.,

because the WL reward is based on the difference between the actual state and the state
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where one agent is clamped, it is much less affected by the total number of agents).

4.5 Macrolearning

In the experiments recounted above the agents' were sumciently independent that assum-

ing they did not affect each other's actions (when forming guesses for effect sets) allowed

the resultant WL reward signals to result in optimal performance. In this section we

investigate the contrasting situation where we have initial guesses of effect sets that are

quite poor and that therefore result in bad global performance when used with WL re-

wards., In particular, we investigate tile use of macrolearniug to correct those guessed

effect sets at run-time, so that with the corrected guessed effect sets WL rewards will

instead give optimal performance. This models real-world scenarios where the system

designer's initial guessed effect sets are poor approximations of the actual associated

effect sets and need to be corrected adaptively.

In these experiments the bar problem is significantly modified to incorporate con-

straints designed to result in poor G when ttle WL reward is used with certain initial

guessed effect sets. To do this we forced the nights actually attended by some of the

agents (followers) to agree with those attended by other agents (leaders), regardless

of what night those followers "picked" via their microlearning algorithms. (For leaders,

picked and actually attended nights were always the same.) We then had the world utility

be the sum, over all leaders, of the values of a triply-indexed reward matrix whose indices

are the the nights that each leader-follower set attends: G(__) = _t _i Rl,(t),/li(t),/2i(t)

where li(t) is the night the i th leader attends in week t, and fli(t) and f2i(t) are the

nights attended by the followers of leader i, in week t (in this study, each leader has two

followers). We also had the states of each node be one of the integers {0, 1, ..., 6} rather

than (as in the bar problem) a unary seven-dimensional vector. This was a bit of a

contrivance, since constructions like 0__,, ° aren't meaningful for such essentially symbolic

interpretations of the possible states _-,,0" But as elaborated below, it was helpful for

constructing a scenario in which guessed effect set WLU results in poor performance,
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i.e.,a scenarioin whichwecanexplorethe applicationof macrolearning.

To seehow this setupcan result in poor world utility, first note that the system's
dynamicsis what restrictsall the membersof eachtriple (li(t), fli(t), f2i(t)) to equal

the night picked by leader i for week t. So fli(t) and f2i(t) are both in leader i's actual

effect set at week t -- whereas the initial guess for i's effect set may or may not contain

nodes other than li(t). (E.g., in the bar problem experiments, it does not contain any

nodes beyond li(t).) On the other hand, G and R are defined for all possible triples

(l_(t),fli(t),f2i(t)). So in particular, R is defined for the dynamically unrealizable

triples that can arise in the clamping operation. This fact, combined with the leader-

follower dynamics, means that for certain R's there exist guessed effect sets such that

the dynamics assures poor world utility when the associated WL rewards are used. This

is precisely the type of problem that macrolearning is designed to correct.

As an example, say each week only contains two nights, 0 and 1. Set Rlll= 1 and

R000 = 0. So the contribution to G when a leader picks night 1 is 1, and when that

leader picks night 0 it is 0, independent of the picks of that leader's followers (since the

actual nights they attend are determined by their leader's picks). Accordingly, we want

to have a private utility for each leader that will induce that leader to pick night 1. Now

if a leader's guessed effect set includes both of its followers (in addition to the leader

itself), then clamping all elements in its effect set to 0 results in an R value of R000 = 0.

Therefore the associated guessed effect set WLU will reward the leader for choosing night

1, which is what we want. (For this case WL reward equals Rll 1 --R000 ---- 1if the leader

picks night 1, compared to reward R000 - R000 = 0 for picking night 0.)

However consider having two leaders, il and i2, where il's guessed effect set consists of

il itself together with the two followers of i2 (rather than together with the two followers

of il itself). So neither of leader il's followers are in its guessed effect set, while il itself is.

Accordingly, the three indices to il's R need not have the same value. Similarly, clamping

the nodes in its guessed effect set won't affect the values of the second and third indices

to il's R, since the values of those indices are set by il's followers. So for example, if i2

and its two followers go to night 0 in week 0, and il and its two followers go to night 1 in

that week, then tile associated guessed effect set wonderful life reward for il for week 0

is G(__ t=0) - G (CLli, (0),fli2 (0),f2_ 2 (0)(_-,t=0)) = Rl_, (0),fli, (o),f2i 1(o) -{- Rli 2 (0),fli 2 (0),f2, 2 (0) --

[R0,fli I (0),/2il (0) q- Rl, 2 (0),0,0]. This equals Rlll+ R000 - R011 - R000 : 1 - R011. Simply

by setting R011 < -1 we can ensure that this is negative. Conversely, if leader il had

gone to night 0, its guessed effect WLU would have been 0. So in this situation leader il

will get a greater reward for going to night 0 than for going to night 1. In this situation,

leader il's using its guessed effect set WLU will lead it to make the wrong pick.

To investigate the efficacy of the macrolearning, two sets of separate experiments

were conducted. In the first one the reward matrix R was chosen so that if each leader is

maximizing its WL reward, but for guessed effect sets that contain none of its followers,

then the system evolves to minimal world reward. So if a leader incorrectly guesses that
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some _ is its effect set even though a doesn't contain both of that leader's followers,

and if this is true for all leaders, then we are assured of worst possible performance.

In the second set of experiments, we investigated tile efficacy of macrolearning for a

broader spectrum of reward matrices by generating those matrices randomly. We call

these two kinds of reward matrices worst-case and random reward matrices, respectively.

In both cases, if it can modify the initial guessed effect sets of the leaders to include their

followers, then macrolearning will induce the system to be factored.

The microlearning in these experiments was the same as in the bar problem. All

experiments used the WL personal reward with some (initially random) guessed effect

set. When macrolearning was used, it was implemented starting after the microlearning

had run for a specified number of weeks. The macrolearner worked by estimating the

correlations between the agents' selections of which nights to attend. It did this by exam-

ining the attendances of the agents over the preceding weeks. Given those estimates, for

each agent _/the two agents whose attendances were estimated to be the most correlated

with those of agent 71were put into agent _/'s guessed effect set. Of course, none of this

macrolearning had any effect on global performance when applied to follower agents, but

the macrolearning algorithm cannot know that ahead of time; it applied this procedure

to each and every agent in the system.

Figure 4 presents averages over 50 of world reward as a function of weeks using

the worst-case reward matrix. For comparison purl)oses, in both plots the top curve

represents tim case where the followers are in their leader's guessed effect sets. The

bottom curce in both plots represents the other extreme where no leader's guessed effect

set contains either of its followers. In both plots, the middle curve is performance when

the leaders' guessed effect sets are initially random, both with (right) and without (left)

macrolearning turned on at week 500.

The performance for random guessed effect sets differs only slightly from that of hav-

ing leaders' guessed effect sets contain none of their followers; both start with poor values

of world reward that deteriorates with time. However, when macrolearning is performed

on systems with initially random guessed effect sets, the system quickly rectifies itself

and converges to optimal performance. This is reflected by the sudden vertical jump

through the middle of the right plot at 500 weeks, the point at which macrolearning

changed the guessed effect sets. By changing those guessed effect sets macrolearning

results in a system that is factored for the associated WL reward function, so that those

reward functions quickly induced the maximal possible world reward.

Figure 5 presents performance averaged over 50 runs for world reward as a function of

weeks using a spectrum of reward matrices selected at random. The ordering of the plots

is exactly as in Figure 4. Macrolearning is applied at 2000 weeks, in the right plot. The

sinmlations in Figure 5 were lengthened from those in Figure 4 because the convergence

time of the full spectrum of reward matrices case was longer.

In figure 5 the macrolearning resulted in a transient degradation in performance at
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Figure 4: Leader-follower problem with worst case reward matrix. In both plots, every

follower is in its leader's guessed effect set in the top curve, no follower is in its leader's

guessed effect set in the bottom curve, and followers are randomly asigned to guessed

effect sets of the leaders in ttle middle curve. The two plots are without (left) and with

(right) macrolearning at 500 weeks.

2000 weeks followed by convergence to the optimal. Without macrolearning the system's

performance no longer varied after 2000 weeks. Combined with the results presented in

Figure 4, these experiments demonstrate that macrolearning induces optimal perfor-

mance by aligning the agents' guessed effect sets with those agents that they actually do

influence the most.

5 CONCLUSION

Many distributed computational tasks cannot be addressed by direct modeling of the

underlying dynamics, or are at best poorly addressed that way due to robustness and

scalability concerns. Such tasks should instead be addressed by model-independent ma-

chine learning techniques. In particular, Reinforcement Learning (RL) techniques are

often a natural choice for how to address such tasks. When -- as is often the case -- we

cannot rely on centralized control and communication, such RL algorithms have to be

deployed locally, throughout the system.

This raises the important and profound question of how to configure those algorithms,

and especially their associated utility functions, so as to achieve the (global) computa-

tional task. In particular we must ensure that the RL algorithms do not "work at

cross-purposes" as far as the global task is concerned, lest phenomena like tragedy of the

commons occur. How to do initialize a system to do this is an an entirely novel kind of

inverse problem, and how to adapt a system at run-time to better achieve such a global

task is an entirely novel kind of learning problem. We call any distributed computational

system analyzed from the perspective of such an inverse problem and/or on-learning a
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plots is exactly as in Figure 4. Macrolearning is applied at 2000 weeks, in the right plot.

COllective INtelligence (COIN).

As discussed in the literature review section of this chapter, there are many ap-

proaches/fields that address aspects of COINs. These range from multi-agent systems

through conventional economics and on to computational economics. (Human economies

are a canonical model of a functional COIN.) They range onward to game theory, various

aspects of distributed biological systems, and on through physics, active walker models,

and recurrent neural nets. Unfortunately, none of these fields seems appropriate as a

general approach to understanding COrNs.

After this literature review we present a mathematical theory for COINs. We then

present experiments on two test problenls that validate the predictions of that theory

for how best to design a COIN to achieve a global computational task. The first set of

experiments involves a variant of Arthur's famous E1 Farol Bar problem. The second set

instead considers a leader-follower problem that was hand-designed to cause maximal

difficulty for the advice of our theory on how to initialize a COIN. This second set of

experiments was therefore a test of the on-line learning aspect of our approach to COINs.

In both experiments the procedures derived from our theory, procedures using only local

information, vastly outperformed natural alternative approaches, even such approaches

that exploited global information. Indeed, in both problems, following the theory sum-

marized in this chapter provides good solutions even when the exact conditions required

by the associated theorems hold only approximately.

There are many directions in which future work on COINs will proceed; it is a vast and

rich area of research. We are already successfully applying our current understanding of

COINs, tentative as it is, to internet packet routing problems. We are also investigating

COINs in a more general optimization context where economics-inspired market mech-

anisms are used to guide some of the interactions among the agents of the distributed

system. The goal in this second body of work is to parallelize and solve numerical opti-
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mizationproblemswheretheconceptof an "agent"maynot be in the naturaldefinition
of theproblem.Wealsointendto try to applyourcurrentCOINframeworkto theprob-
lem of designing high-occupancy toll lanes in vehicular traffic, and to help understand

the "design space" necessary for distributed biochemical entities like pre-genomic cells.
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